
投影次梯度下降的收敛性分析

张腾

设 W 是闭凸集 (closed convex set)， f (w) 是凸函数 (convex function)，对于如下的约束凸优化

min
w

f (w), s.t. w ∈ W ⊆ Rn

投影次梯度下降 (projected subgradient descent) 的第 t 轮更新公式为

wt+1 = projW (wt − ηtgt) ≜ argmin
w∈W

∥w − (wt − ηtgt)∥2

其中 ηt > 0 是步长，gt ∈ ∂ f (wt) 是次梯度，即将单步下降后的点投影到可行域 W。进一步化简有

wt+1 = argmin
w∈W

1/2∥w − wt + ηtgt∥2
2 = argmin

w∈W
{ηt⟨gt, w − wt⟩+ 1/2∥w − wt∥2

2}

= argmin
w∈W

{ηt( f (wt) + ⟨gt, w − wt⟩︸ ︷︷ ︸
f (w)在wt处的线性近似

) + 1/2 ∥w − wt∥2
2︸ ︷︷ ︸

wt的邻域

}

= argmin
w∈W

{ηt⟨gt, w⟩+ 1/2∥w − wt∥2
2}

即 wt+1 是在 wt 的某个邻域内最小化 f (w) 在 wt 处的线性近似。

注. 若可行域 W = Rn，则无需做投影，若 f 可微，则次梯度即为梯度。

引理 1. 记 ϕ(w) = ηt⟨gt, w⟩+ 1/2∥w − wt∥2
2，wt+1 = argminw∈W ϕ(w)，则

ηt⟨gt, wt+1 − w⟩ ≤ 1/2∥w − wt∥2
2 − 1/2∥w − wt+1∥2

2 − 1/2∥wt+1 − wt∥2
2 (1)

证明. ϕ(w) 是关于 w 的二次函数，其等高线 ϕ(wt+1) 与 W 相切于 wt+1，梯度 ∇ϕ(wt+1) 与切线垂
直，因此对于 ∀w ∈ W 有

⟨∇ϕ(wt+1), w − wt+1⟩ ≥ 0

于是

ηt⟨gt,w⟩+ 1/2∥w − wt∥2
2

= ηt⟨gt, w − wt+1 + wt+1⟩+ 1/2∥w − wt+1 + wt+1 − wt∥2
2

= ηt⟨gt, wt+1⟩+ 1/2∥wt+1 − wt∥2
2 + ηt⟨gt, w − wt+1⟩+ 1/2∥w − wt+1∥2

2 + ⟨w − wt+1, wt+1 − wt⟩

= ηt⟨gt, wt+1⟩+ 1/2∥wt+1 − wt∥2
2 + ⟨ηtgt + wt+1 − wt, w − wt+1⟩+ 1/2∥w − wt+1∥2

2

= ηt⟨gt, wt+1⟩+ 1/2∥wt+1 − wt∥2
2 + ⟨∇ϕ(wt+1), w − wt+1⟩+ 1/2∥w − wt+1∥2

2

≥ ηt⟨gt, wt+1⟩+ 1/2∥wt+1 − wt∥2
2 + 1/2∥w − wt+1∥2

2

移项整理即可。 ♣
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1 非平滑函数

假设：

• f 是 L-李普希茨连续函数，即对 ∀w ∈ W 及 ∀g ∈ ∂ f (w) 有 ∥g∥ ≤ L。
• f 是 α-强凸函数，对一般凸函数可令 α = 0。

引理 2. 对 ∀w ∈ W 有

f (wt)− f (w) ≤
(

1
2ηt

− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 +
L2ηt

2
(2)

证明. 分别根据 α-强凸、式(1)、柯西不等式、L-李普希茨连续、均值不等式有

f (wt)− f (w) ≤ ⟨gt, wt − w⟩ − α

2
∥w − wt∥2

2

= ⟨gt, wt − wt+1⟩+ ⟨gt, wt+1 − w⟩ − α

2
∥w − wt∥2

2

(1)
≤ ⟨gt, wt − wt+1⟩+

(
1

2ηt
− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 −
1

2ηt
∥wt+1 − wt∥2

2

≤
(

1
2ηt

− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 + ∥gt∥2∥wt − wt+1∥2 −
1

2ηt
∥wt+1 − wt∥2

2

≤
(

1
2ηt

− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 + L∥wt − wt+1∥2 −
1

2ηt
∥wt+1 − wt∥2

2

≤
(

1
2ηt

− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 +
L2ηt

2

♣

1.1 f 非强凸

此时 α = 0，根据式(2)，对 ∀w ∈ W 有

f (wt)− f (w) ≤ 1
2ηt

∥w − wt∥2
2 −

1
2ηt

∥w − wt+1∥2
2 +

L2ηt

2

累加可得
r

∑
t=s

ηt f (wt)−
r

∑
t=s

ηt f (w) ≤ 1
2
∥w − ws∥2

2 −
1
2
∥w − wr+1∥2

2 +
L2

2

r

∑
t=s

η2
t

≤ 1
2
∥w − ws∥2

2 +
L2

2

r

∑
t=s

η2
t

≤ R2 +
L2

2

r

∑
t=s

η2
t (3)

其中 R2 ≜ maxu,v∈W ∥u − v∥2
2/2。
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1.1.1 固定步长

取 ηt = η，s = 1，r = T，由式(3)有

1
T ∑

t∈[T]
f (wt)− f (w) ≤ R2

ηT
+

L2η

2

欲使上界最紧，可令

η =

√
2R2

TL2 =⇒ 1
T ∑

t∈[T]
f (wt)− f (w) ≤

√
2R2L2

T

令 w̄ = ∑t∈[T] wt/T、ŵ = argminwt :t∈[T] f (wt)，由 f 的凸性有

f (w̄)− f (w) ≤
√

2RL√
T

, f (ŵ)− f (w) ≤
√

2RL√
T

1.1.2 递减步长

固定步长 η 依赖总迭代轮数 T，可取递减步长

ηt =

√
2R2

tL2

易知

T

∑
t=⌈T/2⌉

ηt =

√
2R2

L2

T

∑
t=⌈T/2⌉

1√
t
≥
√

2R2

L2

∫ T+1

(T+1)/2

1√
t
dt = 2

√
R2(T + 1)

L2 (
√

2 − 1)

T

∑
t=⌈T/2⌉

η2
t =

2R2

L2

T

∑
t=⌈T/2⌉

1
t
≤ 2R2

L2

∫ T

⌈T/2⌉−1

1
t

dt =
2R2

L2 ln
T

⌈T/2⌉ − 1
≤ 2R2

L2 ln 3

(4)

由 f 的凸性、式(3)、式(4)有

f

(
T

∑
t=⌈T/2⌉

ηtwt

∑T
t′=⌈T/2⌉ ηt′

)
− f (w) ≤

T

∑
t=⌈T/2⌉

ηt

∑T
t′=⌈T/2⌉ ηt′

f (wt)− f (w)

≤ 1

∑T
t′=⌈T/2⌉ ηt′

(
R2 +

L2

2

T

∑
t=⌈T/2⌉

η2
t

)

≤ L
2(
√

2 − 1)R
√

T + 1
R2(1 + ln 3) =

(1 + ln 3)RL
2(
√

2 − 1)
√

T + 1

注. • 所有界都是 O(RL/
√

T)，要想误差不超过 ϵ，需做 O(R2L2/ϵ2) 轮迭代。
• 所有界都是对 ∀w ∈ W 成立，不仅仅是 w⋆。
• 界不是关于最后的 wT 的，固定步长是平均和最好的 w，递减步长是后一半 w 的加权平均。
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1.2 f 强凸

此时 α > 0，累加式(2)可得

∑
t∈[T]

at f (wt)− ∑
t∈[T]

at f (w) ≤ ∑
t∈[T]

at

(
1

2ηt
− α

2

)
∥w − wt∥2

2 − ∑
t∈[T]

at

2ηt
∥w − wt+1∥2

2 +
L2

2 ∑
t∈[T]

atηt

= ∑
t∈[T]

at

(
1

2ηt
− α

2

)
∥w − wt∥2

2 −
T+1

∑
t=2

at−1

2ηt−1
∥w − wt∥2

2 +
L2

2 ∑
t∈[T]

atηt

=
a1(1 − αη1)

2η1
∥w − w1∥2

2 +
T+1

∑
t=2

(
at(1 − αηt)

2ηt
− at−1

2ηt−1

)
∥w − wt∥2

2 +
L2

2 ∑
t∈[T]

atηt

取 ηt = 2/αt、at = t，则

at(1 − αηt)

ηt
=

αt2(1 − 2/t)
2

=
αt(t − 2)

2
≤ α(t − 1)2

2
=

at−1

ηt−1

故不等号右边第二项 ≤ 0，将其放掉有

∑
t∈[T]

t f (wt)−
T(T + 1)

2
f (w) ≤ −α

4
∥w − w1∥2

2 +
L2T

α

不等号右边第一项也 ≤ 0，将其放掉，两边同除以 T(T + 1)/2 可得

f

(
T

∑
t=1

2t
T(T + 1)

wt

)
− f (w) ≤ 2L2

α(T + 1)

注. 误差界是 O(L2/αT)，要想误差不超过 ϵ，需做 O(L2/αϵ) 轮迭代。

2 β-平滑函数

假设

• f 是 β-平滑函数，即 f 可微且梯度 β-李普希茨连续，即对于 ∀w, u ∈ S 有

∥∇ f (w)−∇ f (u)∥2 ≤ β∥w − u∥2 =⇒ f (w) ≤ f (u) + ⟨∇ f (u), w − u⟩+ β

2
∥w − u∥2

2

• f 是 α-强凸函数，对一般凸函数可令 α = 0。

引理 3 (单调性). 若步长 ηt ≤ 2/β，则 f (wt+1) ≤ f (wt)。

证明. 此时 gt = ∇ f (wt) 就是梯度，式(1)变成

ηt⟨∇ f (wt), wt+1 − w⟩ ≤ 1
2
∥w − wt∥2

2 −
1
2
∥w − wt+1∥2

2 −
1
2
∥wt+1 − wt∥2

2, w ∈ W (5)

令 w = wt 可得 ηt⟨∇ f (wt), wt+1 − wt⟩ ≤ −∥wt − wt+1∥2
2，于是

f (wt+1) ≤ f (wt) + ⟨∇ f (wt), wt+1 − wt⟩+
β

2
∥wt+1 − wt∥2

2
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≤ f (wt)−
(

1
ηt

− β

2

)
∥wt+1 − wt∥2

2

≤ f (wt)

♣

引理 4. 若步长 ηt ≤ 1/β，则

f (wt+1) ≤ f (w) +

(
1

2ηt
− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2, ∀w ∈ W (6)

证明. 对 ∀w ∈ W，分别根据 β-平滑、α-强凸、式(5)、β ≤ 1/ηt 有

f (wt+1) ≤ f (wt) + ⟨∇ f (wt), wt+1 − wt⟩+
β

2
∥wt+1 − wt∥2

2

= f (wt) + ⟨∇ f (wt), w − wt⟩+
α

2
∥w − wt∥2

2︸ ︷︷ ︸
≤ f (w)

+ ⟨∇ f (wt), wt+1 − w⟩︸ ︷︷ ︸
用式(5)来放

+
β

2
∥wt+1 − wt∥2

2 −
α

2
∥w − wt∥2

2

≤ f (w) +
1

2ηt
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2 −
1

2ηt
∥wt+1 − wt∥2

2

+
β

2
∥wt+1 − wt∥2

2 −
α

2
∥w − wt∥2

2

≤ f (w) +

(
1

2ηt
− α

2

)
∥w − wt∥2

2 −
1

2ηt
∥w − wt+1∥2

2

♣

2.1 f 非强凸

此时 α = 0，式(6)变成

f (wt+1)− f (w) ≤ 1
2ηt

∥w − wt∥2
2 −

1
2ηt

∥w − wt+1∥2
2

累加可得

∑
t∈[T]

f (wt+1)− T f (w) ≤ 1
2η1

∥w − w1∥2
2 −

1
2ηT

∥w − wT+1∥2
2

取 ηt = 1/β，根据单调性有

f (wT+1)− f (w) ≤ β

2T
∥w − w1∥2

2 −
β

2T
∥w − wT+1∥2

2 ≤
βR2

T

注. 误差界是 O(βR2/T)，要想误差不超过 ϵ，需做 O(βR2/ϵ) 轮迭代。

注. 有了平滑性，就有了 { f (wt)} 序列的单调性，从而误差界也只跟最后的 w 相关了。
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2.2 f 强凸

此时 α > 0，对式(6)令 w = w⋆，结合 f (wt+1) ≥ f (w⋆) 可得

0 ≤
(

1
2ηt

− α

2

)
∥w⋆ − wt∥2

2 −
1

2ηt
∥w⋆ − wt+1∥2

2

即 ∥w⋆ − wt+1∥2
2 ≤ (1 − αηt)∥w⋆ − wt∥2

2，取 ηt = 1/β 累乘可得

∥w⋆ − wT+1∥2
2 ≤

(
1 − α

β

)T

∥w⋆ − w1∥2
2 =

(
1 − 1

κ

)T

∥w⋆ − w1∥2
2 ≤ exp

(
−T

κ

)
2R2

其中 κ = β/α 为条件数 (condition number)。

注. 误差界是 O(R2 exp(−T/κ))，要想误差不超过 ϵ，需做 O(κ ln(R2/ϵ)) 轮迭代。

若想得到目标函数值的误差界，对式(6)令 w = w⋆、ηt = 1/β 可得

f (wT+1)− f (w⋆) ≤
(

β

2
− α

2

)
∥w⋆ − wT∥2

2 −
1

2ηt
∥w⋆ − wT+1∥2

2

≤ β − α

2
∥w⋆ − wT∥2

2

≤ β − α

2

(
1 − α

β

)T−1

∥w⋆ − w1∥2
2

=
β

2

(
1 − α

β

)T

∥w⋆ − w1∥2
2

≤ exp
(
−T

κ

)
βR2

注. 误差界是 O(βR2 exp(−T/κ))，要想误差不超过 ϵ，需做 O(κ ln(βR2/ϵ)) 轮迭代。

注. Nesterov 在 Introductory Lectures on Convex Optimization 一书中采用步长 η = 2
β+α
，得到

f (wT+1)− f (w⋆) ≤ β

2
exp

(
− 4T

κ + 1

)
∥w1 − w⋆∥2

2 ≤ exp
(
− 4T

κ + 1

)
βR2

要想误差不超过 ϵ，需做 O((κ + 1) ln(βR2/ϵ)/4) 轮迭代，在常数上有所改进。

本文的所有结论总结如下：

表 1: 4 种不同的情况下投影次梯度下降的收敛率

L-李普希茨连续 α-强凸、L-李普希茨连续 β-平滑 β-平滑、α-强凸

T 轮误差 O(RL/
√

T) O(L2/αT) O(βR2/T) O(βR2 exp(−T/κ))

迭代轮数 O(R2L2/ϵ2) O(L2/αϵ) O(βR2/ϵ) O(κ ln(βR2/ϵ))
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