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一些符号说明：

1. 输入空间 X ⊆ Rn，类别标记集合 Y = {1,−1}
2. 未知分布 P 定义在 Z = X ×Y 上
3. 数据集 D = {(xi, yi)}i∈[m] ∈ Zm，其中对 ∀i : (xi, yi)

IID∼ P

4. 设学习算法 A 考虑的假设空间为 H，则 A : ∪∞
m=1Zm 7→ H 是任意数据集到 H 的映射

5. 对任意假设 h，其泛化错误率和在数据集 D 上的经验错误率为

er(h) = P{(x, y) ∈ Z | h(x) 6= y} = E(x,y)∼P[I(h(x) 6= y)], erD(h) =
1
m ∑

i∈[m]

I(h(xi) 6= yi)

6. H 中泛化错误率最小的假设 h⋆ = argminh∈H er(h)

1 学习的形式化定义

定义 1 (可学习). 设 H 是 X 7→ {1,−1} 的函数类，若对任意给定的

1. 准确率参数 ϵ ∈ (0, 1)

2. 置信度参数 δ ∈ (0, 1)

存在 m0(ϵ, δ) 使得对任意 m ≥ m0(ϵ, δ) 和任意分布 P，数据集 D ∼ Pm，学习算法 A 以至少 1 − δ 的
概率输出一个 ϵ-好的假设，即

Pm{D ∈ Zm | er(A(D)) < er(h⋆) + ϵ} ≥ 1 − δ

则称 H 对于 A 是可学习的。

注. 分布 Pm 定义在 Zm 上，其输入是 Zm 的子集 (包含 m 个样本的数据集的集合)，输出是其测度。为
保持符号系统的简洁，后文省略 D ∈ Zm。

由于泛化错误率依赖未知分布 P，不可计算，考虑经验错误率最小化 (empirical risk minimization,
ERM) 算法，其输出 hERM

D = argminh∈H erD(h)，于是

er(hERM
D )− er(h⋆) = er(hERM

D )− erD(hERM
D ) + erD(hERM

D )− er(h⋆)

≤ er(hERM
D )− erD(hERM

D ) + erD(h⋆)− er(h⋆)

≤ |erD(hERM
D )− er(hERM

D )|+ |erD(h⋆)− er(h⋆)|

(1)
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因此我们需要一个刻画 |经验错误率−泛化错误率| 上界的工具。注意给定 h，经验错误率

erD(h) =
1
m ∑

i∈[m]

I(h(xi) 6= yi) ≜
1
m ∑

i∈[m]

Xi

其中 Xi = I(h(xi) 6= yi)
IID∼ Bern(er(h))，因此其期望就等于 er(h)，故刻画 rv 偏离其均值程度的集中

不等式可以为我们所用：

1. 注意 m · erD(h) = ∑i∈[m] Xi ∼ Bin(er(h), m)，因此根据 Chebyshev’s 不等式有

Pm{|erD(h)− er(h)| ≥ ϵ} = Pm{|m · erD(h)− m · er(h)|2 ≥ m2ϵ2}

≤ m · er(h)(1 − er(h))
m2ϵ2 =

er(h)(1 − er(h))
mϵ2 ≤ 1

4mϵ2

2. 注意 Xi ∈ [0, 1]，因此根据 Hoeffding’s 不等式有

Pm{erD(h)− er(h) ≥ ϵ} = Pm{m · erD(h)− m · er(h) ≥ mϵ}

≤ exp

(
−2m2ϵ2

∑i∈[m](1 − 0)2

)
= exp(−2mϵ2)

对称的有 Pm{erD(h)− er(h) ≤ −ϵ} ≤ exp(−2mϵ2)，结合 union bound 有

Pm{|erD(h)− er(h)| ≥ ϵ} ≤ 2 exp(−2mϵ2)

当 mϵ2 ≥ 2 时，Hoeffding’s 不等式更紧。令 2 exp(−2mϵ2) = δ 可得 ϵ =
√

1/2m ln 2/δ，于是

Pm

{
|erD(h)− er(h)| ≥

√
1

2m
ln

2
δ

}
≤ δ

Pm

{
|erD(h)− er(h)| <

√
1

2m
ln

2
δ

}
≥ 1 − δ

(2)

注. 式(2)可以这样理解，在所有包含 m 个样本的数据集构成的空间中，给定 h，数据集有“好”有“坏”。
好数据集上，h 的经验错误率可以近似泛化错误率，差别不超过

√
1/2m ln 2/δ，此时 ERM 算法是靠谱的，

而这样的好数据集在整个空间的占比至少为 1 − δ；在坏数据集上，h 的经验错误率不是泛化错误率的
好近似，最小化它没啥意义，ERM 算法会学习失败，失败的概率即坏数据集的占比，不超过 δ。此外，
δ 越小，m 越大，换言之，随着样本数的增加，好数据集越来越多，坏数据集越来越少。

式(2)只能用于 h⋆、不能用于 hERM
D ，因为式(2)的推导用到了 Hoeffding’s 不等式，其前提“经验错

误率的期望等于泛化错误率”只对固定的 h 成立，而 hERM
D 是依 D 而变化的。对此我们釜底抽薪，注意

hERM
D 来自 H，故要求 H 中的任意假设的坏数据集的占比都不超过 δ，一个更强的要求是所有假设的坏

数据集占比的和不超过 δ，即 union bound，这就要求 H 是有限的，于是

Pm{∃h ∈ H : |erD(h)− er(h)| ≥ ϵ} ≤ ∑
h∈H

Pm{|erD(h)− er(h)| ≥ ϵ} ≤ |H|2 exp(−2mϵ2) (3)
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令 |H|2 exp(−2mϵ2) = δ 可得 ϵ =
√

1/2m ln 2|H|/δ，于是

Pm

{
∀h ∈ H : |erD(h)− er(h)| <

√
1

2m
ln

2|H|
δ

}
≥ 1 − δ

显然上式等价于

Pm

{
max
h∈H

|erD(h)− er(h)| <
√

1
2m

ln
2|H|

δ

}
≥ 1 − δ (4)

由式(4)不难看出随着 m → ∞，H 中所有假设的经验错误率 → 泛化错误率，这称为一致收敛。回代入
式(1)可得

er(hERM
D )− er(h⋆) ≤ |erD(hERM

D )− er(hERM
D )|+ |erD(h⋆)− er(h⋆)|

≤ 2 max
h∈H

|erD(h)− er(h)|

<

√
2
m

ln
2|H|

δ
with probability at least 1 − δ

上式称为估计误差界 (estimation error bound)。

定理 2. 对 ∀ϵ, δ ∈ (0, 1) 和 ∀m ≥ 2/ϵ2 ln 2|H|/δ，任何有限假设空间 H 对 ERM 算法都是可学习的。

1.1 目标函数存在的情形

前面假设 P 是定义在 Z = X ×Y 上的任意分布，因此存在同样的 x 对应不同 y 的可能，此时不
存在目标函数 t ∈ H 使得 y = t(x)，这称为不可知 (agnostic) 学习。现对其做些简化，假设存在目标
函数 t ∈ H 和定义在 X 上的分布 µ，使得对 X 的任意可测子集 A 有

P{(x, t(x)) | x ∈ A} = µ(A), P{(x, y) | x ∈ A, y 6= t(x)} = 0

换言之在此设定下，每个 x 有唯一的类别标记 t(x)，训练数据集 D = {(xi, t(xi))}i∈[m]，假设 h 的泛化
错误率为 er(h, t) = µ{x ∈ X | h(x) 6= t(x)}。

由于 t ∈ H，因此 ERM 算法必然找到一个经验错误率为零的假设 h，若 er(h, t) ≥ ϵ，则 iid 采样
出 m 个 t、h 预测完全一致的样本的概率 ≤ (1 − ϵ)m ≤ exp(−ϵm)，故

Pm{∃h ∈ H : er(h, t) ≥ ϵ} ≤ |H| exp(−ϵm)

令 |H| exp(−ϵm) = δ 可得 ϵ = 1/m ln |H|/δ，于是

Pm
{

max
h∈H

er(h, t) <
1
m

ln
|H|

δ

}
≥ 1 − δ

对 ∀m ≥ 1/ϵ ln |H|/δ，任何有限假设空间 H 对 ERM 算法都是可学习的。

注. 跟不可知学习的结果对比可以发现，此时对样本数的要求从 O(1/ϵ2) 降到了 O(1/ϵ)，这也表明该情
形比不可知学习要简单。
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2 增长函数

通常假设空间是无限的，此时式(3)中的 union bound 不能直接用，因为所有假设的坏数据集占比
的和是无穷大。我们需要一种将无限归约到有限的工具，将 |H| 替换掉。注意数据集是有限的，因此定
义增长函数 (growth function) 如下：

定义 3. 对任意假设空间 H，增长函数 ΠH(m) 是其对 m 个样本的最大不同预测结果数

∀m ∈ Z+ : ΠH(m) = max
D∈Zm

|{[h(x1), . . . , h(xm)] : h ∈ H}|

注. 增长函数是个有限值，最大为 2m。

通过考虑不同预测结果数，增长函数将无限的假设空间划分成了有限个等价类，每类中的假设对 m

个样本的预测完全一致。1971 年，Vapnik 证明了对任意假设空间 H 有

Pm{∃h ∈ H : |erD(h)− er(h)| ≥ ϵ} ≤ 4ΠH(2m) exp(−mϵ2/8) (5)

式(5)的证明比较繁琐，依赖如下三个引理：

引理 4. 定义 Zm 和 Z2m 的子集

Q = {D | ∃h ∈ H : |er(h)− erD(h)| ≥ ϵ}, R = {(D1,D2) | ∃h ∈ H : |erD1(h)− erD2(h)| ≥ ϵ/2}

若 mϵ2 ≥ 2，则 Pm(Q) ≤ 2P2m(R)。

证明. 根据三角不等式有

|er(h)− erD1(h)| ≥ ϵ

|er(h)− erD2(h)| ≤ ϵ/2

}
=⇒ |erD1(h)− erD2(h)| ≥ ϵ/2

于是

P2m(R) ≥ P2m{(D1,D2) | ∃h ∈ H : |er(h)− erD1(h)| ≥ ϵ ∧ |er(h)− erD2(h)| ≤ ϵ/2}

=
∫
Q

Pm{D2 | ∃h ∈ H : |er(h)− erD1(h)| ≥ ϵ ∧ |er(h)− erD2(h)| ≤ ϵ/2} dPm(D1)

≥
∫
Q

1
2

dPm(D1) =
1
2

Pm(Q)

其中第二个不等号是因为对 ∀D1 ∈ Q(∃h ∈ H : |er(h)− erD1(h)| ≥ ϵ)，对这样的 h 由 Chebyshev’s 不
等式有

Pm{|er(h)− erD2(h)| ≥ ϵ/2} = Pm{|m · er(h)− m · erD2(h)|2 ≥ (mϵ/2)2}

≤ m · er(h)(1 − er(h))
(mϵ/2)2 =

4er(h)(1 − er(h))
mϵ2 ≤ 1

mϵ2 ≤ 1
2

♣

记 Γm 是集合 [2m] 上的一类置换，对 ∀σ ∈ Γm 和 ∀i ∈ [m]，以下两种情形恰发生一种
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1. 不变：σ(i) = i、σ(m + i) = m + i

2. 对换：σ(i) = m + i、σ(m + i) = i

对 ∀D ∈ Z2m，假设其中元素是有顺序的，σD 为对前半元素和后半元素的置换，例如 σ = (25)(36) 作
用到 D = {z1, z2, z3, z4, z5, z6} 上为 σD = {z1, z5, z6, z4, z2, z3}。

引理 5. 对 ∀R ⊆ Z2m 有 P2m(R) = ED∼P2m [Pσ(σD ∈ R)] ≤ maxD∈Z2m Pσ(σD ∈ R)，其中 Pσ 表示从
Γm 中等概率挑选 σ。

证明. 置换是双射，因此对 ∀σ ∈ Γm 有 P2m(R) = P2m{D | σD ∈ R}，于是

P2m(R) =
1

|Γm| ∑
σ∈Γm

P2m{D | σD ∈ R} =
1

|Γm| ∑
σ∈Γm

∫
Z2m

I(σD ∈ R)dP2m(D)

=
∫
Z2m

1
|Γm| ∑

σ∈Γm

I(σD ∈ R)dP2m(D) =
∫
Z2m

Pσ(σD ∈ R)dP2m(D) ≤ max
D∈Z2m

Pσ(σD ∈ R)

♣

引理 6. 对引理4中定义的集合 R = {(D1,D2) | ∃h ∈ H : |erD1(h)− erD2(h)| ≥ ϵ/2} ⊆ Z2m 和从 Γm 中
等概率挑选的 σ 有

max
D∈Z2m

Pσ(σD ∈ R) ≤ 2ΠH(2m) exp(−mϵ2/8)

证明. 设 D = {(x1, y1), (x2, y2), . . . , (x2m, y2m)}、S = {x1, x2, . . . , x2m}，H 在 S 上的不同预测结果数
为 t ≤ ΠH(2m)，不妨设 h1, h2, . . . , ht 就是 t 个预测不同的假设，易知 σD ∈ R 等价于

∃j ∈ [t] :

∣∣∣∣∣ 1
m ∑

i∈[m]

I(hj(xσ(i)) 6= yσ(i))−
1
m ∑

i∈[m]

I(hj(xσ(m+i)) 6= yσ(m+i))

∣∣∣∣∣ ≥ ϵ

2

于是根据 union bound 有

Pσ(σD ∈ R) = Pσ

(
∃j ∈ [t] :

∣∣∣∣∣ 1
m ∑

i∈[m]

(I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)))

∣∣∣∣∣ ≥ ϵ

2

)

≤ ∑
j∈[t]

Pσ

(∣∣∣∣∣ 1
m ∑

i∈[m]

(I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)))

∣∣∣∣∣ ≥ ϵ

2

)

≤ t max
j∈[t]

Pσ

(∣∣∣∣∣ 1
m ∑

i∈[m]

(I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)))

∣∣∣∣∣ ≥ ϵ

2

)

≤ ΠH(2m)max
j∈[t]

Pσ

(∣∣∣∣∣ 1
m ∑

i∈[m]

(I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)))

∣∣∣∣∣ ≥ ϵ

2

)

注意求和中的 I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)) 是个二值 rv 且

=

 I(hj(xi) 6= yi)− I(hj(xm+i) 6= ym+i), with probability 0.5

I(hj(xm+i) 6= ym+i)− I(hj(xi) 6= yi), with probability 0.5
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因此其均值为零，取值 ∈ [−1, 1]，由 Hoeffding’s 不等式有

Pσ

(∣∣∣∣∣ 1
m ∑

i∈[m]

(I(hj(xσ(i)) 6= yσ(i))− I(hj(xσ(m+i)) 6= yσ(m+i)))

∣∣∣∣∣ ≥ ϵ

2

)
≤ 2 exp

(
−2(mϵ/2)2

4m

)
= 2 exp(−mϵ2/8)

回代可得 Pσ(σD ∈ R) ≤ ΠH(2m)maxj∈[t] 2 exp(−mϵ2/8) = 2ΠH(2m) exp(−mϵ2/8)，由 D 的任意性知结
论成立。 ♣

式(5)的证明. 结合引理4、引理5、引理6的结论易知当 mϵ2 ≥ 2 时有

Pm{∃h ∈ H : |erD(h)− er(h)| ≥ ϵ} = Pm(Q) ≤ 2P2m(R) ≤ 2 max
D∈Z2m

Pσ(σD ∈ R)

≤ 4ΠH(2m) exp(−mϵ2/8)

当 mϵ2 < 2 时，式(5)右边大于 1，结论显然成立。 ♣

注. 引理4证明的最后若用 Hoeffding’s 不等式则有 Pm{|er(h)− erD2(h)| ≥ ϵ/2} ≤ 2 exp(−mϵ2/2)，该式
在 mϵ2 > 2 ln 2 时有意义，在 mϵ2 ≥ 5 时比 Chebyshev’s 不等式的 1/mϵ2 更紧，式(5)可加强为

Pm{∃h ∈ H : |erD(h)− er(h)| ≥ ϵ} ≤ 2
1 − 2 exp(−mϵ2/2)

ΠH(2m) exp(−mϵ2/8)

但不管 mϵ2 如何增大都有 2/1−2 exp(−mϵ2/2) > 2，因此相对于 4，只是很小的常数倍改进。

3 VC 维

增长函数 ΠH(m) 与样本数 m 有关，计算起来不太方便，于是 Vapnik 和 Chervonenkis 提出了 VC
维，它是直接刻画 H 复杂度的标量，与 m 无关，比增长函数容易计算。

定义 7 (VC 维). 对于包含 m 个样本的数据集 D = {(xi, yi)}i∈[m]，如果 {y1, . . . , ym} 不管如何取值，都
∃h ∈ H : erD(h) = 0，则称 D 可以被 H 打散 (shattering)，即此时 ΠH(m) = 2m。

假设空间 H 的 VC 维是它能打散的最大数据集中的样本数：

V(H) = max{m : ΠH(m) = 2m}

注. V(H) = m 表示存在 (不是任意) 一个 m 个样本的数据集可以被 H 打散，因此要证明某假设空间
的 VC 维为 d 需要做两件事，一是构造一个可以被打散的 d 个样本的数据集，二是证明对于任意 d + 1

个样本的数据集都不可能被 H 打散。

例 8 (Rn 中的超平面集合的 VC 维为 n + 1). 先构造可被打散的 n + 1 个样本构成的数据集

{(x0 = 0, y0), (x1 = e1, y1), . . . (xn = en, yn)}

记 w> = [y1, . . . , yn]，则 f (x) = w>x + y0/2 = 0 可打散该数据集。
对于任意 n + 2 个样本，由 Radon’s 定理知其必然可以分为两个子集，其凸包是相交的。注意若两

个子集可以被超平面分开，那它们的凸包必然不相交，故不存在超平面可以将这 n + 2 个样本分开。
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1972 年，Sauer 用 VC 维给出了增长函数的上界。

引理 9 (Sauer’s 引理). 若 V(H) = d，则对 ∀m ∈ Z+ 有

ΠH(m) ≤
d

∑
i=0

(
m
i

)
证明. 若 m ≤ d，则存在 m 个样本的数据集被 H 打散，故

ΠH(m) = 2m =
m

∑
i=0

(
m
i

)
≤

d

∑
i=0

(
m
i

)
下面考虑 m > d 的情况，首先若 d = 0，即对任意将本，H 都只有一种预测，则有

ΠH(m) = 1 =

(
m
0

)
故引理对 (∀m ≥ 1, d = 0) 都成立。若能用数学归纳法证明

(m − 1, 0)
...

(m − 1, d − 1)

(m − 1, d)


=⇒ (m, d)

则由引理对 (∀m ≥ 1, d = 0) 和 (m = 1, d = 1) 成立，可推得引理对 (∀m ≥ 2, d = 1) 都成立；同理，
由引理对 (∀m ≥ 2, d = 0, 1) 和 (m = 2, d = 2) 成立，可推得引理对 (∀m ≥ 3, d = 2) 都成立，以此类
推，可知引理对任意的 m 和 d 都成立。

假设引理对 (m − 1, 0), . . . , (m − 1, d) 成立。设 S = {x1, . . . , xm} 并且 H 对其不同预测结果数达
到最大，即 ΠH(m)。根据对 S 的预测结果不同，H 分成 ΠH(m) 个等价类，记该等价类集合为 HS，
从每一个等价类中任选一个假设构成集合 G，显然 |HS | = |G| = ΠH(m)。

设 S ′ = {x1, . . . , xm−1}，同样根据对 S ′ 的预测结果不同可以得到 H 在 S ′ 上的等价类集合 HS ′，
从每一个等价类中任选一个假设构成集合 G ′。对于 HS ′ 中每一个等价类，若其中所有假设对 xm 的预
测一致，则它们还会作为一个等价类出现在 HS 中；否则则会一分为二作为两个等价类出现在 HS 中，
设 HS ′ 中被一分为二的等价类集合为 HS ′′，从其每一个等价类中任选一个假设构成集合 G ′′，于是有

|G| = |G ′|+ |G ′′|

显然 V(G ′) ≤ d，于是由增长函数的定义和归纳假设有

|G ′| ≤ ΠG ′(m − 1) ≤
V(G ′)

∑
i=0

(
m − 1

i

)
≤

d

∑
i=0

(
m − 1

i

)
若 ∀R ⊆ S ′ 可被 G ′′ 打散，则 R∪ {xm} 可被 G 打散，于是 V(G ′′) ≤ d − 1，否则 V(G) > d，由增长
函数的定义和归纳假设有

|G ′′| ≤ ΠG ′′(m − 1) ≤
V(G ′′)

∑
i=0

(
m − 1

i

)
≤

d−1

∑
i=0

(
m − 1

i

)
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回代有

|G| ≤
d

∑
i=0

(
m − 1

i

)
+

d−1

∑
i=0

(
m − 1

i

)
= 1 +

d

∑
i=1

(
m − 1

i

)
+

d

∑
i=1

(
m − 1
i − 1

)
= 1 +

d

∑
i=1

(
m
i

)
=

d

∑
i=0

(
m
i

)
故引理对 (m, d) 成立。 ♣

根据 Sauer’s 引理可得

推论 10. 若 V(H) = d，则对任意正整数 m ≥ d 有

ΠH(m) ≤ (em/d)d = O(md)

证明. 由 Sauer’s 引理有

ΠH(m) ≤
d

∑
i=0

(
m
i

)
≤

d

∑
i=0

(
m
i

)(m
d

)d−i
≤

m

∑
i=0

(
m
i

)(m
d

)d−i

=
(m

d

)d m

∑
i=0

(
m
i

)(
d
m

)i

=
(m

d

)d
(

1 +
d
m

)m

≤
(m

d

)d
ed =

( em
d

)d
= O(md)

♣

回代入式(5)可得

Pm{∃h ∈ H : |erD(h)− er(h)| ≥ ϵ} ≤ 4ΠH(2m) exp(−mϵ2/8) ≤ 4(2em/d)d exp(−mϵ2/8)

令 4(2em/d)d exp(−mϵ2/8) = δ 可得 ϵ =
√

8/m(d ln 2em/d + ln 4/δ)，于是有基于 VC 维的一致收敛界：

Pm

{
sup
h∈H

|erD(h)− er(h)| <

√
8
m

(
d ln

2em
d

+ ln
4
δ

)}
≥ 1 − δ

和估计误差界：

Pm

{
sup
h∈H

|er(hERM
D )− er(h⋆)| <

√
32
m

(
d ln

2em
d

+ ln
4
δ

)}
≥ 1 − δ

定理 11. 对 ∀ϵ, δ ∈ (0, 1) 和 ∀m ≥ 32/ϵ2(d ln 2em/d + ln 4/δ)，任何 VC 维为 d 的假设空间 H 对 ERM 算
法都是可学习的。

4 附录

定理 12 (Markov’s 不等式). 设非负随机变量 X 具有有限均值 µ = E[X]，则对任意实数 t > 0 有

P(X ≥ t) ≤ µ

t

证明. 由于

µ =
∫ ∞

0
xp(x)dx =

∫ t

0
xp(x)dx +

∫ ∞

t
xp(x)dx ≥ 0 + t

∫ ∞

t
p(x)dx = tP(X ≥ t)

两边除以 t 后命题得证。 ♣
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定理 13 (Chebyshev’s 不等式). 设随机变量 X 具有有限均值 µ 和方差 σ2，则对任意实数 t > 0 有

P(|X − µ| ≥ t) ≤ σ2

t2

证明. 由于 |X − µ|2 是非负随机变量，由 Markov’s 不等式可得

P(|X − µ| ≥ t) = P(|X − µ|2 ≥ t2) ≤ E[|X − µ|2]
t2 =

σ2

t2

故命题得证。 ♣

引理 14 (Hoeffding’s 法则). 设 X 是随机变量且 E[X] = 0，X ∈ [a, b]，则对任意实数 t > 0 有

E[exp(tX)] ≤ exp
(

t2(b − a)2

8

)
证明. 由于 exp(tX) 是凸函数，对于任意 x ∈ [a, b]，由 Jensen’s 不等式得

exp(tX) = exp
(

b − x
b − a

ta +
x − a
b − a

tb
)
≤ b − x

b − a
exp(ta) +

x − a
b − a

exp(tb)

注意 E[X] = 0，于是

E[exp(tX)] ≤ E

[
b − X
b − a

exp(ta) +
X − a
b − a

exp(tb)
]
=

b
b − a

exp(ta) +
−a

b − a
exp(tb) = exp(ϕ(t))

其中

ϕ(t) = ln
(

b
b − a

exp(ta) +
−a

b − a
exp(tb)

)
= ta + ln

(
b

b − a
+

−a
b − a

exp(t(b − a))
)

对于任意 t > 0 易知有

ϕ′(t) = a − a exp(t(b − a))
/( b

b − a
+

−a
b − a

exp(t(b − a))
)

= a − a
/( b

b − a
exp(−t(b − a))− a

b − a

)
ϕ′′(t) = −ab exp(−t(b − a))

/( b
b − a

exp(−t(b − a))− a
b − a

)2

=
α(1 − α) exp(−t(b − a))(b − a)2

((1 − α) exp(−t(b − a)) + α)2

=
(1 − α) exp(−t(b − a))

(1 − α) exp(−t(b − a)) + α

α

(1 − α) exp(−t(b − a)) + α
(b − a)2

≤ 1
4
(b − a)2

其中 α = −a/b−a、1 − α = b/b−a，注意 ϕ(0) = ϕ′(0) = 0，于是存在 θ ∈ [0, t] 满足

ϕ(t) = ϕ(0) + tϕ′(0) +
t2

2
ϕ′′(θ) ≤ t2(b − a)2

8

♣
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定理 15 (Hoeffding’s 不等式). 设 X1, . . . , Xm 为相互独立的随机变量，且 Xi ∈ [ai, bi], i ∈ [m]。记
Sm = ∑i∈[m] Xi，对任意实数 ϵ > 0 有

P(Sm − E[Sm] ≥ ϵ) ≤ exp

(
−2ϵ2

∑i∈[m](bi − ai)2

)
, P(Sm − E[Sm] ≤ −ϵ) ≤

(
−2ϵ2

∑i∈[m](bi − ai)2

)

证明. 对任意实数 t > 0，由 Markov’s 不等式和 Hoeffding’s 法则可得

P(Sm − E[Sm] ≥ ϵ) = P(exp(t(Sm − E[Sm])) ≥ exp(tϵ))

≤ E[exp(t(Sm − E[Sm])]

exp(tϵ)

=
E[∏i∈[m] exp(t(Xi − E[Xi]))]

exp(tϵ)
=

∏i∈[m] E[exp(t(Xi − E[Xi]))]

exp(tϵ)

≤ ∏m
i=1 exp(t2(bi−ai)

2/8)

exp(tϵ)
= exp

(
t2 ∑i∈[m](bi − ai)2

8
− tϵ

)

令 t = 4ϵ/∑i∈[m](bi−ai)
2 即可。 ♣

定理 16 (Radon’s 定理). Rn 中任意 n + 2 个点构成的集合 D 都可以划分成两个子集 D1 和 D2 使其凸
包相交。

证明. 设 D = {x1, . . . , xn+2} ⊆ Rn，考虑

∑
i∈[n+2]

αixi = 0, ∑
i∈[n+2]

αi = 0

这是包含 n + 2 个变量、由 n + 1 个方程组成的线性方程组，因此必然有非零解，设 β1, . . . , βn+2 是一
组非零解，记

I1 = {i | βi > 0}, I2 = {i | βi ≤ 0}, β = ∑
i∈I1

βi, D1 = {xi | i ∈ I1}, D2 = {xi | i ∈ I2}

显然 D1 与 D2 是对 D 的一个划分，易知

∑
i∈I1

βixi + ∑
i∈I2

βixi = 0 =⇒ ∑
i∈I1

βixi = − ∑
i∈I2

βixi =⇒ ∑
i∈I1

βi

β
xi = ∑

i∈I2

−βi

β
xi

注意 ∑i∈I1
βi/β = ∑i∈I2

−βi/β = 1，这表明存在一个点既属于 D1 的凸包、也属于 D2 的凸包。 ♣

注. n + 2 个点是必须的，如果只有 n + 1 个点，线性方程组未必有非零解。
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