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Johnson–Lindenstrauss (JL) 变换是一种保距的线性降维方法。

定理 1 (JL 变换). 给定 ϵ ∈ (0, 1) 和 m ∈ Z+，设 d ∈ Z+ 满足 d ≥ 4 ln m/ϵ2/2−ϵ3/3，则对 ∀S =

{x1, . . . , xm} ⊆ RD，存在可在随机多项式时间内得到的线性映射 f : RD 7→ Rd 使得对 ∀xi, xj ∈ S 有
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2 ≤ (1 + ϵ)‖xi − xj‖2
2

引理 2. 设 R = (Rij)i∈[d],j∈[D] 为随机矩阵，Rij
iid∼ N (0, 1)，u ∈ RD 为任意固定向量，v = Ru/√d ∈ Rd，

则 P(‖v‖2
2 6∈ [(1− ϵ)‖u‖2

2, (1 + ϵ)‖u‖2
2]) ≤ 2/m2。
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又 vi 是独立正态 rv 的和，也服从正态分布，故 vi
iid∼ N (0, ‖u‖2

2/d)。
记 x = (

√
d/‖u‖)v，显然 xi

iid∼ N (0, 1)，易知对 ∀λ ≥ 0 有
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其中不等号是根据 Markov’s 不等式，最后一个等号是根据
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为了使上界尽可能紧，令
√

1− 2λeλ(1+ϵ) 关于 λ 的导数为零可得 λ = ϵ/2(1+ϵ) ∈ [0, 1/2)，回代可得
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根据 ln(1 + x) ≤ x− x2/2 + x3/3 可得
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综上，根据 union bound 可得
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♣

JL 变换的证明. 注意 f 是线性映射，因此 f (xi)− f (xj) = f (xi − xj)，取 u = xi − xj， f (u) = Ru/√d，
由引理知 P(‖ f (u)‖2
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2) 个 (xi, xj) 这样的样本对，存在一

对不保距的概率
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即所有样本对保距的概率至少为 1/m，经过 O(m) 次随机投影可将成功的概率提升至任意想要的值。 ♣
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