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对数几率回归 (logisitic regression, LR) 虽然名字里有回归二字，但其实是一个用于分类的线性超
平面模型。

1 二分类

对二分类问题，不妨设 Y = {1,−1}，由 Bayes’s 定理知

P(y = 1 | x) =
P(x, y = 1)

P(x)
=

P(x, y = 1)
P(x, y = 1) + P(x, y = −1)

=
1

1 + P(x,y=−1)/P(x,y=1)
=

1
1 + exp(−a)

= σ(a)

其中 σ : R 7→ (0, 1) 为对数几率函数 (logisitic function)，其将正负类概率比 (几率，odds) 的对数

a = ln
P(x, y = 1)

P(x, y = −1)
= ln

P(x, y = 1)
1 − P(x, y = 1)

= logit(P(x, y = 1)) = σ−1(P(x, y = 1))

映射为正类概率。LR 用线性模型 w>x + b 拟合 a，故名对数几率回归。另一方面，LR 也是在用线性
模型 w>x + b 输出的 σ 变换拟合正类概率：

P(y = 1 | x) = σ(w>x + b) =
1

1 + exp(−(w>x + b))

P(y = −1 | x) = 1 − σ(w>x + b) =
exp(−(w>x + b))

1 + exp(−(w>x + b))
=

1
1 + exp(w>x + b)

= σ(−(w>x + b))

给定 D = {(xi, yi)}i∈[m] ⊆ Rn × {1,−1}，求解 w 和 b 可采用极大似然法，即

argmax
w,b

ln P(D | w, b) = argmax
w,b

ln ∏
i∈[m]

P(xi, yi | w, b) = argmax
w,b

∑
i∈[m]

ln P(xi, yi | w, b)

= argmax
w,b

∑
i∈[m]

ln P(yi | xi, w, b) = argmax
w,b

∑
i∈[m]

ln
1

1 + exp(−yi(w>xi + b))

= argmin
w,b

∑
i∈[m]

ln(1 + exp(−yi(w>xi + b)))
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上述形式化也可以通过交叉熵损失推导出来，类别标记的独热编码为 [1+y/2, 1−y/2]，模型预测的概率分
布为 [1/1+exp(−(w>x+b)), 1/1+exp(w>x+b)]，故经验损失为

ℓCE = ∑
i∈[m]

(
1 + yi

2
ln(1 + exp(−(w>xi + b))) +

1 − yi

2
ln(1 + exp(w>xi + b))

)
= ∑

i∈[m]

(
I(yi = 1) ln(1 + exp(−(w>xi + b))) + I(yi = −1) ln(1 + exp(w>xi + b))

)
= ∑

i∈[m]

ln(1 + exp(−yi(w>xi + b)))

2 多分类

对多分类问题，不妨设 Y = [c]，LR 引入 c 个线性模型 w>
i x + bi，其中 i ∈ [c]，并用 c 个模型的

输出的 softmax 变换拟合各类概率

P(y = 1 | x) = σ1(x) =
exp(w>

1 x + b1)

∑i∈[c] exp(w>
i x + bi)

=
exp((w1 − wc)>x + b1 − bc)

1 + ∑i∈[c−1] exp((wi − wc)>x + bi − bc)

...

P(y = c − 1 | x) = σc−1(x) =
exp(w>

c−1x + bc−1)

∑i∈[c] exp(w>
i x + bi)

=
exp((wc−1 − wc)>x + bc−1 − bc)

1 + ∑i∈[c−1] exp((wi − wc)>x + bi − bc)

P(y = c | x) = σc(x) =
exp(w>

c x + bc)

∑i∈[c] exp(w>
i x + bi)

=
1

1 + ∑i∈[c−1] exp((wi − wc)>x + bi − bc)

也可以直接学习 w′
i = wi − wc 和 b′i = bi − bc，其中 i ∈ [c − 1]，这样变量少一些。当 c = 2 时退化为

二分类，w1 − w2 和 b1 − b2 就是前面学习的 w 和 b，因此 softmax 变换就是 σ 变换的推广。
给定 D = {(xi, yi)}i∈[m] ⊆ Rn × [c]，用极大似然求解

argmax
wj ,bj ,j∈[c]

ln P(D | wj, bj, j ∈ [c]) = argmax
wj ,bj ,j∈[c]

ln ∏
i∈[m]

P(xi, yi | wj, bj, j ∈ [c])

= argmax
wj ,bj ,j∈[c]

∑
i∈[m]

ln P(xi, yi | wj, bj, j ∈ [c])

= argmax
wj ,bj ,j∈[c]

∑
i∈[m]

ln P(yi | xi, wj, bj, j ∈ [c])

= argmax
wj ,bj ,j∈[c]

∑
i∈[m]

ln
exp(w>

yi
xi + byi)

∑j∈[c] exp(w>
j xi + bj)

= argmax
wj ,bj ,j∈[c]

∑
i∈[m]

ln σyi(xi)

注意

∂σyi(xi)

∂wyi

=
exp(w>

yi
xi)xi ∑j∈[c] exp(w>

j xi + bj)− exp(w>
yi

xi + byi) exp(w>
yi

xi + byi)xi

(∑j∈[c] exp(w>
j xi + bj))2

= σyi(xi)xi − σ2
yi
(xi)xi = σyi(xi)(1 − σyi(xi))xi

∂σyi(xi)

∂wk
=

− exp(w>
yi

xi + byi) exp(w>
k xi + bk)xi

(∑j∈[c] exp(w>
j xi + bj))2

= −σyi(xi)σk(xi)xi, k 6= yi
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合并起来可写成 ∂σyi (xi)/∂wk = σyi(xi)(I(k = yi)− σk(xi))xi，于是

∂ ∑i∈[m] ln σyi(xi)

∂wk
= ∑

i∈[m]

1
σyi(xi)

∂σyi(xi)

∂wk
= ∑

i∈[m]

(I(k = yi)− σk(xi))xi

同理可得

∂ ∑i∈[m] ln σyi(xi)

∂bk
= ∑

i∈[m]

1
σyi(xi)

∂σyi(xi)

∂bk
= ∑

i∈[m]

(I(k = yi)− σk(xi))

故最优的 w⋆
k , b⋆k , k ∈ [c] 应满足如下的非线性方程组

∑
i∈[m]

I(k = yi)xi = ∑
i∈[m]

σk(xi)xi, ∑
i∈[m]

I(k = yi) = ∑
i∈[m]

σk(xi), ∀k ∈ [c] (1)

其中左边是第 k类样本和 (数)，右边是所有样本加权和 (数)，权重为 softmax变换给出的概率。式(1)与
马尔可夫过程里的细致平稳 (detailed balance) 方程很像，这里我们也称其为平衡方程组。

3 最大熵

最大熵 (maximum entropy)是对随机事件进行概率分配的一个准则，在满足所有约束的条件下，不
再做任何额外假设，也就是对未知的都当作等概率处理，因为此时熵最大。举个简单的例子，给你一个
骰子，问掷出 6 的概率是多少，由于你对这个骰子一无所知，只能回答 1/6；假如有个先知跟你说这个
骰子掷出 1 的概率是 1/4，再问你掷出 6 的概率是多少，那你肯定会回答 3/20。
平衡方程组是基于 softmax 变换推导出来的，下面证明在满足式(1)约束的条件下，最大熵准则给

出的概率变换就是 softmax 变换，即对数几率回归是最大熵准则指导下的线性分类模型。
设 πk(xi) 为将样本 xi 预测为第 k 类的概率，其熵为 −∑k∈[c] πk(xi) ln πk(xi)，考虑如下优化问题

max
π1,...,πc

∑
i∈[m]

(
− ∑

k∈[c]
πk(xi) ln πk(xi)

)
s.t. πk(xi) ≥ 0, ∀i ∈ [m], ∀k ∈ [c]

∑
k∈[c]

πk(xi) = 1, ∀i ∈ [m]

∑
i∈[m]

I(k = yi)xi = ∑
i∈[m]

πk(xi)xi, ∀k ∈ [c]

∑
i∈[m]

I(k = yi) = ∑
i∈[m]

πk(xi), ∀k ∈ [c]

其中前两个约束要求 [π1, . . . , πc] 是一个分布，后两个约束就是平衡方程组。下面先不考虑第一个非负
性约束 (事实上它是冗余的)，对后三个约束分别引入拉格朗日乘子 α1, . . . , αm、β1, . . . , βc、γ1, . . . , γc 得
到拉格朗日函数

L(πk, αi, βk, γk) = − ∑
i∈[m]

∑
k∈[c]

πk(xi) ln πk(xi)− ∑
i∈[m]

αi

(
∑

k∈[c]
πk(xi)− 1

)
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− ∑
k∈[c]

β>
k

(
∑

i∈[m]

(I(k = yi)− πk(xi))xi

)
− ∑

k∈[c]
γk

(
∑

i∈[m]

(I(k = yi)− πk(xi))

)

对 πk(xi) 求偏导可得

∂L(πk, αi, βk, γk)

∂πk(xi)
= − ln πk(xi)− 1 − αi + β>

k xi + γk =⇒ πk(xi) = exp(−1 − αi + β>
k xi + γk)

于是

∑
k∈[c]

exp(−1 − αi + β>
k xi + γk) = 1 =⇒ exp(αi) = ∑

k∈[c]
exp(−1 + β>

k xi + γk)

=⇒ πk(xi) =
exp(−1 + β>

k xi + γk)

∑j∈[c] exp(−1 + β>
j xi + γj)

=
exp(β>

k xi + γk)

∑j∈[c] exp(β>
j xi + γj)

显然这就是 softmax 变换。
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