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标量、向量、矩阵间的求导共有 9 种可能：

∂标量/∂标量 ∂标量/∂向量 ∂标量/∂矩阵
∂向量/∂标量 ∂向量/∂向量 ∂向量/∂矩阵
∂矩阵/∂标量 ∂矩阵/∂向量 ∂矩阵/∂矩阵

表 1: 9 种求导情形

∂标量/∂标量就是我们熟悉的单变量微积分，∂向量/∂矩阵、∂矩阵/∂向量、∂矩阵/∂矩阵会涉及高
阶张量，处理更为麻烦，因此本文只考虑剩下的 5 种情形。

设 u ∈ Rl，U ∈ Rm×n，则向量、矩阵对标量求导的定义为

∂u

∂x
≜


∂u1
∂x
∂u2
∂x
...

∂ul
∂x

 ,
∂U
∂x

≜


∂u11
∂x

∂u12
∂x . . . ∂u1n

∂x
∂u21
∂x

∂u22
∂x . . . ∂u2n

∂x
...

... . . . ...
∂um1

∂x
∂um2

∂x . . . ∂umn
∂x


设 x ∈ Rl，X ∈ Rm×n，则标量对向量、矩阵求导的定义为

∂u
∂x

≜
[

∂u
∂x1

∂u
∂x2

. . . ∂u
∂xl

]
,

∂u
∂X

≜


∂u

∂x11

∂u
∂x21

. . . ∂u
∂xm1

∂u
∂x12

∂u
∂x22

. . . ∂u
∂xm2...

... . . . ...
∂u

∂x1n

∂u
∂x2n

. . . ∂u
∂xmn


即向量、矩阵对标量求导的结果与分子尺寸相同，标量对向量、矩阵求导的结果与分母的转置尺寸相同。
向量对向量求导的定义为雅可比矩阵：

∂u

∂x
≜


∂u1
∂x1

∂u1
∂x2

. . . ∂u1
∂xl

∂u2
∂x1

∂u2
∂x2

. . . ∂u2
∂xl...

... . . . ...
∂ul
∂x1

∂ul
∂x2

. . . ∂ul
∂xl


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即行数与分子尺寸相同、列数与分母尺寸相同。
以上即为分子布局，其好处是链式法则跟单变量微积分中的顺序一样，坏处是计算标量值函数 f (x)

关于向量变量 x 的梯度时要多做一个转置：∇ f = (∂ f /∂x)>，否则梯度下降优化变量和梯度没法直接
相减。分母布局的结果均是分子布局的转置，好处就是算梯度时不用做转置，坏处就是链式法则的顺序
要完全反过来。

1 基本结果

以下结果根据定义和单变量微积分的求导法则都是显然的。
单变量微积分中常量的导数为零

∂a
∂x

= 0

类似的这里有

∂a

∂x
= 0,

∂a
∂x

= 0>,
∂a

∂x
= 0,

∂A
∂x

= 0,
∂a
∂X

= 0>

单变量微积分中常数标量乘的求导法则为

∂(au)
∂x

= a
∂u
∂x

类似的这里有

∂(au)
∂x

= a
∂u

∂x
,

∂(au)
∂x

= a
∂u
∂x

,
∂(au)

∂x
= a

∂u

∂x
,

∂(aU)

∂x
= a

∂U
∂x

,
∂(au)

∂X
= a

∂u
∂X

单变量微积分中加法的求导法则为

∂(u + v)
∂x

=
∂u
∂x

+
∂v
∂x

类似的这里有

∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x
,

∂(u + v)
∂x

=
∂u
∂x

+
∂v
∂x

,
∂(u+ v)

∂x
=

∂u

∂x
+

∂v

∂x
∂(U + V)

∂x
=

∂U
∂x

+
∂V
∂x

,
∂(u + v)

∂X
=

∂u
∂X

+
∂v
∂X

单变量微积分中乘法的求导法则为

∂(uv)
∂x

=
∂u
∂x

v + u
∂v
∂x

类似的这里有

∂(uv)

∂x
=

∂u

∂x
v + u

∂v

∂x
,

∂(uv)
∂x

=
∂u
∂x

v + u
∂v
∂x

∂(UV)

∂x
=

∂U
∂x

V + U
∂V
∂x

,
∂(uv)

∂X
=

∂u
∂X

v + u
∂v
∂X
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其中第二行是因为[
∂(UV)

∂x

]
ij
=

∂(∑k uikvkj)

∂x
= ∑

k

∂uik

∂x
vkj + ∑

k
uik

∂vkj

∂x
=

[
∂U
∂x

V
]

ij
+

[
U

∂V
∂x

]
ij[

∂(uv)
∂X

]
ij
=

∂(uv)
∂xji

=
∂u
∂xji

v + u
∂v
∂xji

=

[
∂u
∂X

]
ij

v + u
[

∂v
∂X

]
ij

第一行可看作第二行的特例。∂(uv)/∂x 有两种可能，一是 uv 为标量，即两者的内积，这里暂且不表，
后文再讲；二是 uv 为矩阵，这属于我们不考虑的∂矩阵/∂向量情形。

单变量微积分中有 ∂x/∂x = 1，类似的这里有

∂xi

∂x
= e>i ,

∂x

∂xi
= ei,

∂x

∂x
= I,

∂xij

∂X
= Eji,

∂X
∂xij

= Eij

其中 Eij 是 (i, j) 处为 1 其余为 0 的矩阵。
单变量微积分中的链式法则为

∂g(u)
∂x

=
∂g(u)

∂u
∂u
∂x

类似的，
• 只涉及向量：设 x ∈ Rn，u = u(x) ∈ Rm，g : Rm 7→ Rl，则

∂g(u)

∂x︸ ︷︷ ︸
l×n

=
∂g(u)

∂u︸ ︷︷ ︸
l×m

∂u

∂x︸︷︷︸
m×n

这是因为 [
∂g(u)

∂x

]
ij
=

∂[g(u)]i
∂xj

= ∑
k∈[m]

∂[g(u)]i
∂uk

∂uk

∂xj
=

∂[g(u)]i
∂u

∂u

∂xj

=

[
∂g(u)

∂u

]
i,:

[
∂u

∂x

]
:,j
=

[
∂g(u)

∂u

∂u

∂x

]
i,j

注意若 n = m = l = 1，就退化成了单变量的链式法则。
• 自变量是矩阵：设 u = u(X)，g : R 7→ R，则

∂g(u)
∂X

=
∂g(u)

∂u
∂u
∂X

这是因为 [
∂g(u)

∂X

]
ij
=

∂g(u)
∂xji

=
∂g(u)

∂u
∂u
∂xji

=
∂g(u)

∂u

[
∂u
∂X

]
ij

• 中间变量是矩阵：设 U = U(x) ∈ Rm×n，g : Rm×n 7→ R，则

∂g(U)

∂x
= ∑

p
∑

q

∂g(U)

∂upq

∂upq

∂x
= ∑

q
∑

p

[
∂g(U)

∂U

]
qp

[
∂U
∂x

]
pq
= tr

(
∂g(U)

∂U
∂U
∂x

)
(1)
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2 向量对标量求导

矩阵和向量的乘积是向量，若 A 与 x 无关，易知有[
∂(Au)

∂x

]
i
=

∂[Au]i
∂x

=
∂(∑k aikuk)

∂x
= ∑

k
aik

∂uk

∂x
=

[
A

∂u

∂x

]
i
=⇒ ∂(Au)

∂x
= A

∂u

∂x

∂(u>A)

∂x
=

[
∂(A>u)

∂x

]>
=

[
A>

∂u

∂x

]>
=

∂u>

∂x
A

向量的外积也是向量，记 u = [u1(x); u2(x); u3(x)]，v = [v1(x); v2(x); v3(x)]，则

u× v =


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


于是

∂(u× v)

∂x
=


∂u2
∂x v3 − ∂u3

∂x v2 + u2
∂v3
∂x − u3

∂v2
∂x

∂u3
∂x v1 − ∂u1

∂x v3 + u3
∂v1
∂x − u1

∂v3
∂x

∂u1
∂x v2 − ∂u2

∂x v1 + u1
∂v2
∂x − u2

∂v1
∂x

 =

(
∂u

∂x

)
× v + u× ∂v

∂x

3 标量对向量求导

二次型是标量，设 A 与 x 无关，易知有[
∂(u>Av)

∂x

]
i
=

∂(u>Av)

∂xi
=

∂(∑j ∑k ujajkvk)

∂xi
= ∑

j
∑

k
ujajk

∂vk

∂xi
+ ∑

j
∑

k

∂uj

∂xi
ajkvk

= u>A
∂v

∂xi
+ v>A>

∂u

∂xi
=

[
u>A

∂v

∂x

]
i
+

[
v>A>

∂u

∂x

]
i

=⇒ ∂(u>Av)

∂x
= u>A

∂v

∂x
+ v>A>

∂u

∂x

特别的，
• 取 A = I，则

∂(u>v)

∂x
= u>

∂v

∂x
+ v>

∂u

∂x

进一步若 u = a 与 x 无关，则

∂(a>v)

∂x
= a>

∂v

∂x
,

∂(a>x)

∂x
= a>

∂x

∂x
= a>,

∂(b>Ax)

∂x
= b>A

• 取 u = v = x，则

∂(x>Ax)

∂x
= x>A

∂x

∂x
+ x>A>

∂x

∂x
= x>(A + A>)

进一步若 A = I，则

∂(x>x)

∂x
=

∂‖x‖2

∂x
= 2x>
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• 若 A = ba>，则

∂(x>ba>x)

∂x
=

∂(a>xx>b)

∂x
= x>(ab> + ba>)

• 更一般的有

∂[(Ax+ b)>C(Dx+ e)]

∂x
=

∂(x>A>CDx+ b>CDx+ x>A>Ce+ b>e)

∂x

= x>(A>CD + D>C>A) + b>CD + e>C>A

= (Dx+ e)>C>A + (Ax+ b)>CD

范数也是标量，若 a 与 x 无关，则

[
∂‖x− a‖

∂x

]
i
=

∂‖x− a‖
∂xi

=
∂
√

∑j(xj − aj)2

∂xi
=

1
2

2(xi − ai)√
∑j(xj − aj)2

=
xi − ai

‖x− a‖ (2)

=⇒ ∂‖x− a‖
∂x

=
(x− a)>

‖x− a‖

4 向量对向量求导

若 A 与 x 无关，易知有[
∂(Au)

∂x

]
ij
=

∂[Au]i
∂xj

=
∂(∑k aikuk)

∂xj
= ∑

k
aik

∂uk

∂xj
=

[
A

∂u

∂x

]
ij
=⇒ ∂(Au)

∂x
= A

∂u

∂x

特别的，若 u = x，则

∂(Ax)

∂x
= A

∂x

∂x
= A

若 v = v(x)，则[
∂(vu)

∂x

]
ij
=

∂(vui)

∂xj
= v

∂ui

∂xj
+ ui

∂v
∂xj

= v
[

∂u

∂x

]
ij
+

[
u

∂v
∂x

]
ij
=⇒ ∂(vu)

∂x
= v

∂u

∂x
+ u

∂v
∂x

注意第一项是标量乘以雅可比矩阵，第二项是列向量乘以行向量。
若 a 与 x 无关，结合式 (2) 可得[

∂

∂x

x− a

‖x− a‖

]
ij
=

∂

∂xj

xi − ai

‖x− a‖ =
δij‖x− a‖
‖x− a‖2 −

xi − ai

‖x− a‖2

∂‖x− a‖
∂xj

=
δij

‖x− a‖ −
xi − ai

‖x− a‖2

xj − aj

‖x− a‖

=⇒ ∂

∂x

x− a

‖x− a‖ =
I

‖x− a‖ −
(x− a)(x− a)>

‖x− a‖3
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5 矩阵对标量求导

若 u = u(x)，V = V(x)，则[
∂(uV)

∂x

]
ij
=

∂(uvij)

∂x
=

∂u
∂x

vij + u
∂vij

∂x
=

∂u
∂x

[V]ij + u
[

∂V
∂x

]
ij
=⇒ ∂(uV)

∂x
=

∂u
∂x

V + u
∂V
∂x

若乘积求导法则中的 U 或 V 可继续分解为 x 相关项的乘积，例如 V← VW，则

∂(UVW)

∂x
=

∂U
∂x

VW + U
∂(VW)

∂x
=

∂U
∂x

VW + U
(

∂V
∂x

W + V
∂W
∂x

)
=

∂U
∂x

VW + U
∂V
∂x

W + UV
∂W
∂x

(3)

由此可知若 A、B 与 x 无关，则

∂(AUB)
∂x

= A
∂U
∂x

B

当 U 为方阵、n 为正整数时有

∂Un

∂x
= Un−1 ∂U

∂x
+ Un−2 ∂U

∂x
U + · · ·+ U

∂U
∂x

Un−2 +
∂U
∂x

Un−1 = ∑
i∈[n]

Ui−1 ∂U
∂x

Un−i (4)

令乘积求导法则中的 V = U−1 可得

0 =
∂I
∂x

=
∂(UU−1)

∂x
= U

∂U−1

∂x
+

∂U
∂x

U−1 =⇒ ∂U−1

∂x
= −U−1 ∂U

∂x
U−1 (5)

由此可知

∂[X−1]kl

∂xij
= tr

(
∂[X−1]kl

∂X−1

∂X−1

∂xij

)
= −tr

(
ElkX−1 ∂X

∂xij
X−1

)
= −tr(X−1ElkX−1Eij)

= −[X−1ElkX−1]ji = −∑
p

∑
q
[X−1]jp[Elk]pq[X−1]qi = −[X−1]jl [X−1]ki

结合式 (3) 还可得海森矩阵

∂2U−1

∂x∂y
=

∂

∂y

(
−U−1 ∂U

∂x
U−1

)
= −∂U−1

∂y
∂U
∂x

U−1 −U−1 ∂2U
∂x∂y

U−1 −U−1 ∂U
∂x

∂U−1

∂y

= U−1 ∂U
∂y

U−1 ∂U
∂x

U−1 −U−1 ∂2U
∂x∂y

U−1 + U−1 ∂U
∂x

U−1 ∂U
∂y

U−1

= U−1
(

∂U
∂y

U−1 ∂U
∂x
− ∂2U

∂x∂y
+

∂U
∂x

U−1 ∂U
∂y

)
U−1

矩阵除了常规的乘积外，还有克罗内克积和哈达玛积。设 U ∈ Rm×n，V ∈ Rp×q，则

∂(U⊗V)

∂x
=


∂u11V

∂x
∂u12V

∂x · · · ∂u1nV
∂x

∂u21V
∂x

∂u22V
∂x · · · ∂u2nV

∂x
...

... . . . ...
∂um1V

∂x
∂um2V

∂x · · · ∂umnV
∂x


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=


∂u11
∂x V + u11

∂V
∂x

∂u12
∂x V + u12

∂V
∂x · · · ∂u1n

∂x V + u1n
∂V
∂x

∂u21
∂x V + u21

∂V
∂x

∂u22
∂x V + u22

∂V
∂x · · · ∂u2n

∂x V + u2n
∂V
∂x

...
... . . . ...

∂um1
∂x V + um1

∂V
∂x

∂um2
∂x V + um2

∂V
∂x · · · ∂umn

∂x V + umn
∂V
∂x



=


∂u11
∂x V ∂u12

∂x V · · · ∂u1n
∂x V

∂u21
∂x V ∂u22

∂x V · · · ∂u2n
∂x V

...
... . . . ...

∂um1
∂x V ∂um2

∂x V · · · ∂umn
∂x V

+


u11

∂V
∂x u12

∂V
∂x · · · u1n

∂V
∂x

u21
∂V
∂x u22

∂V
∂x · · · u2n

∂V
∂x

...
... . . . ...

um1
∂V
∂x um2

∂V
∂x · · · umn

∂V
∂x


=

∂U
∂x
⊗V + U⊗ ∂V

∂x

设 U, V ∈ Rm×n，则

∂(U�V)

∂x
=


∂u11v11

∂x
∂u12v12

∂x · · · ∂u1nv1n
∂x

∂u21v21
∂x

∂u22v22
∂x · · · ∂u2nv2n

∂x
...

... . . . ...
∂um1vm1

∂x
∂um2vm2

∂x · · · ∂umnvmn
∂x



=


∂u11
∂x v11

∂u12
∂x v12 · · · ∂u1n

∂x v1n
∂u21
∂x v21

∂u22
∂x v22 · · · ∂u2n

∂x v2n
...

... . . . ...
∂um1

∂x vm1
∂um2

∂x vm2 · · · ∂umn
∂x vmn

+


u11

∂v11
∂x u12

∂v12
∂x · · · u1n

∂v1n
∂x

u21
∂v21
∂x u22

∂v22
∂x · · · u2n

∂v2n
∂x

...
... . . . ...

um1
∂vm1
∂x um2

∂vm2
∂x · · · umn

∂vmn
∂x


=

∂U
∂x
�V + U� ∂V

∂x

设多项式函数 g(x) = a0 + a1x + a2x2 + a3x3 + · · ·，则 g′(x) = a1 + 2a2x + 3a3x2 + · · ·，若 A 为
与 x 无关的方阵，记

g(xA) = a0I + a1xA + a2x2A2 + a3x3A3 + · · ·

g′(xA) = a1I + 2a2xA + 3a3x2A2 + · · ·

易知有

∂g(xA)

∂x
= a1A + 2a2xA2 + 3a3x2A3 + · · ·

= A(a1I + 2a2xA + 3a3x2A2 + · · · ) = Ag′(xA)

= (a1I + 2a2xA + 3a3x2A2 + · · · )A = g′(xA)A

对于 ex、ln x、sin x、cos x，上式依然适用，例如

∂exA

∂x
= AexA = exAA
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6 标量对矩阵求导

矩阵常见的标量函数有迹和行列式，二次型可以归为迹来处理。

6.1 迹对矩阵求导

若 a 与 X 无关，U = U(X)，V = V(X)，则以下结论是显然的：

∂tr(X)
∂X

= I,
∂tr(U + V)

∂X
=

∂tr(U)

∂X
+

∂tr(V)

∂X
,

∂tr(aU)

∂X
= a

∂tr(U)

∂X

对于乘积有 [
∂tr(UV)

∂X

]
ij
=

∂tr(UV)

∂xji
=

∂(∑p ∑q upqvqp)

∂xji
= ∑

p
∑

q

(
∂upq

∂xji
vqp + upq

∂vqp

∂xji

)
= tr

(
∂U
∂xji

V
)
+ tr

(
U

∂V
∂xji

)
= tr

(
∂(UV)

∂xji

)
由此可知迹和求导的顺序可以交换。特别的，

• 取 U = BA 与 X 无关，V = X，则[
∂tr(BAX)

∂X

]
ij
= tr

(
BA

∂X
∂xji

)
= tr(BAEji) = [BA]ij =⇒

∂tr(BAX)
∂X

=
∂tr(AXB)

∂X
= BA

• 取 U = BA 与 X 无关，V = X>，则

∂tr(BAX>)
∂X

=
∂tr(XA>B>)

∂X
=

∂tr(A>B>X)
∂X

= A>B>

• 取 U = A 与 X 无关，V = XX>，则[
∂tr(AXX>)

∂X

]
ij
= tr

(
A

∂XX>

∂xji

)
= tr

(
A

∂X
∂xji

X>
)
+ tr

(
AX

∂X>

∂xji

)
= tr(AEjiX>) + tr(AXEij)

= [X>A]ij + [AX]ji

从而

∂tr(AXX>)
∂X

=
∂tr(X>AX)

∂X
=

∂tr(XX>A)

∂X
= X>A + X>A> = X>(A + A>)

• 取 U = A 与 X 无关，V = X>X，则[
∂tr(AX>X)

∂X

]
ij
= tr

(
A

∂X>X
∂xji

)
= tr

(
A

∂X>

∂xji
X
)
+ tr

(
AX>

∂X
∂xji

)
= tr(AEijX) + tr(AX>Eji)

= [XA]ji + [AX>]ij

从而

∂tr(AX>X)
∂X

=
∂tr(XAX>)

∂X
=

∂tr(X>XA)

∂X
= (A + A>)X>
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• 取 U = BA 与 X 无关，V = X−1，结合式 (5) 可得[
∂tr(BAX−1)

∂X

]
ij
= tr

(
BA

∂X−1

∂xji

)
= tr

(
−BAX−1 ∂X

∂xji
X−1

)
= −tr

(
X−1BAX−1Eji

)
= −[X−1BAX−1]ij

=⇒ ∂tr(BAX−1)

∂X
=

∂tr(AX−1B)
∂X

= −X−1BAX−1

• 取 U = I，V = (X + A)−1，结合式 (5) 可得[
∂tr(X + A)−1

∂X

]
ij
= tr

(
∂(X + A)−1

∂xji

)
= −tr

(
(X + A)−1 ∂(X + A)

∂xji
(X + A)−1

)
= −tr

(
(X + A)−1(X + A)−1Eji

)
= −[(X + A)−1(X + A)−1]ij

=⇒ ∂tr(X + A)−1

∂X
= −(X + A)−1(X + A)−1

• 取 U = AXB，V = X>C，其中 A、B、C 与 X 无关，则[
∂tr(AXBX>C)

∂X

]
ij
= tr

(
∂(AXB)

∂xji
X>C

)
+ tr

(
AXB

∂(X>C)

∂xji

)
= tr

(
AEjiBX>C

)
+ tr

(
AXBEijC

)
= [BX>CA]ij + [CAXB]ji

=⇒ ∂tr(AXBX>C)

∂X
= BX>CA + B>X>A>C>

• 取 U = AX>B，V = XC，其中 A、B、C 与 X 无关，则[
∂tr(AX>BXC)

∂X

]
ij
= tr

(
∂(AX>B)

∂xji
XC
)
+ tr

(
AX>B

∂(XC)

∂xji

)
= tr

(
AEijBXC

)
+ tr

(
AX>BEjiC

)
= [BXCA]ji + [CAX>B]ij

=⇒ ∂tr(AX>BXC)

∂X
= CAX>B + A>C>X>B>

• 取 U = BA 与 X 无关，V = Xn，其中 n 是正整数，结合式 (4) 可得[
∂tr(BAXn)

∂X

]
ij
= tr

(
BA

∂Xn

∂xji

)
= tr

(
BA ∑

k∈[n]
Xk−1 ∂X

∂xji
Xn−k

)
= ∑

k∈[n]
tr
(

BAXk−1 ∂X
∂xji

Xn−k
)

= ∑
k∈[n]

tr(Xn−kBAXk−1Eji) = ∑
k∈[n]

[Xn−kBAXk−1]ij

=⇒ ∂tr(BAXn)

∂X
=

∂tr(AXnB)
∂X

= ∑
k∈[n]

Xn−kBAXk−1

进一步若 A = B = I，则

∂tr(Xn)

∂X
= ∑

k∈[n]
Xn−kXk−1 = ∑

k∈[n]
Xn−1 = nXn−1
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不难发现形式上和单变量的求导公式 ∂xn/∂x = nxn−1 是一样的。类似的记

eX = I + X +
X2

2!
+

X3

3!
+ · · ·

sin X = X− X3

3!
+

X5

5!
− · · ·

cos X = I− X2

2!
+

X4

4!
− X6

6!
+ · · ·

结合式 (4) 可得

∂tr(eX)

∂X
=

∂

∂X
tr
(

I + X +
X2

2!
+

X3

3!
+ · · ·

)
=

∂tr(I)
∂X

+
∂tr(X)

∂X
+

1
2!

∂tr(X2)

∂X
+

1
3!

∂tr(X3)

∂X
+ · · ·

= I + X +
X2

2!
+ · · · = eX

以及

∂tr(sin X)
∂X

=
∂

∂X
tr
(

X− X3

3!
+

X5

5!
− · · ·

)
=

1
1!

∂tr(X)
∂X

− 1
3!

∂tr(X3)

∂X
+

1
5!

∂tr(X5)

∂X
− · · ·

= I− X2

2!
+

X4

4!
− · · · = cos X

∂tr(cos X)
∂X

=
∂

∂X
tr
(

I− X2

2!
+

X4

4!
− X6

6!
+ · · ·

)
=

∂tr(I)
∂X

− 1
2!

∂tr(X2)

∂X
+

1
4!

∂tr(X4)

∂X
− 1

6!
∂tr(X6)

∂X
+ · · ·

= −X +
X3

3!
− X5

5!
+ · · · = − sin X

均与单变量的求导公式一样。
• 取 U = I，V = A⊗ X，则[

∂tr(A⊗ X)
∂X

]
ij
= tr

(
∂A⊗ X

∂xji

)
= tr

(
A⊗ ∂X

∂xji

)
= tr(A⊗ Eji) = tr(A)δij

=⇒ ∂tr(A⊗ X)
∂X

= tr(A)I

• 取 U = I，V = X⊗ X，则[
∂tr(X⊗ X)

∂X

]
ij
= tr

(
∂X⊗ X

∂xji

)
= tr

(
∂X
∂xji
⊗ X + X⊗ ∂X

∂xji

)
= tr(Eji ⊗ X) + tr(X⊗ Eji) = 2tr(X)δij

=⇒ ∂tr(X⊗ X)
∂X

= 2tr(X)I
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6.2 行列式对矩阵求导

设 X ∈ Rm×n、A ∈ Rl×m、B ∈ Rn×l、Y = AXB ∈ Rl×l，A、B 与 X 无关，结合式 (1) 易知[
∂|AXB|

∂X

]
ij
=

∂|Y|
∂xji

= ∑
p

∑
q

∂|Y|
∂ypq

∂ypq

∂xji
= tr

(
∂|Y|
∂Y

∂Y
∂xji

)
其中第二项

∂Y
∂xji

=
∂(AXB)

∂xji
= A

∂X
∂xji

B = AEjiB

记 yji 有一个微小增量 ϵ 后的矩阵为 Y(yji + ϵ)，根据第 j 行拉普拉斯展开易知

|Y(yji + ϵ)| − |Y| = ϵCji

其中 Cji 是关于 yji 的代数余子式，因此[
∂|Y|
∂Y

]
ij
=

∂|Y|
∂yji

= lim
ϵ→0

|Y(yji + ϵ)| − |Y|
ϵ

= Cji

故第一项

∂|Y|
∂Y

=


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... . . . ...
C1n C2n · · · Cnn

 = Y∗

代入可得 [
∂|AXB|

∂X

]
ij
= tr

(
∂|Y|
∂Y

∂Y
∂xji

)
= tr(Y∗AEjiB) = [BY∗A]ij

=⇒ ∂|AXB|
∂X

= B(AXB)∗A

若 X、A、B 均为可逆方阵，则 Y = AXB 亦为可逆方阵，于是

∂|AXB|
∂X

= B(AXB)∗A = B|AXB|(AXB)−1A = |AXB|X−1 (6)

进一步若 A = B = I，则

∂|X|
∂X

= X∗ = |X|X−1

由此可得

∂|Xn|
∂X

=
∂|X|n

∂X
= n|X|n−1X∗ = n|X|nX−1 = n|Xn|X−1

若 a 与 X 无关，则

∂ ln |aX|
∂X

=
∂ ln am|X|

∂X
=

∂ ln am

∂X
+

∂ ln |X|
∂X

=
1
|X|

∂|X|
∂X

=
X∗

|X| = X−1
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设 X ∈ Rm×n、A ∈ Rm×m、Y = X>AX ∈ Rn×n 可逆，A 与 X 无关，易知有[
∂|X>AX|

∂X

]
ij
= tr

(
Y∗

∂X>AX
∂xji

)
= tr

(
Y∗

∂X>

∂xji
AX
)
+ tr

(
Y∗X>A

∂X
∂xji

)
= tr(Y∗EijAX) + tr(Y∗X>AEji) = [AXY∗]ji + [Y∗X>A]ij

于是

∂|X>AX|
∂X

= (AXY∗)> + Y∗X>A = (AX|X>AX|(X>AX)−1)> + |X>AX|(X>AX)−1X>A

= |X>AX|(X>A>X)−1X>A> + |X>AX|(X>AX)−1X>A

= |X>AX|((X>A>X)−1X>A> + (X>AX)−1X>A)

若 A 对称，则

∂|X>AX|
∂X

= 2|X>AX|(X>AX)−1X>A

• 若 X、A 是方阵，则其均可逆，于是

∂|X>AX|
∂X

= 2|X>||A||X|X−1A−1X−>X>A = 2|X|2|A|X−1

• 若 A = I，则

∂|X>X|
∂X

= 2|X>X|(X>X)−1X> = 2|X>X|X†

以及

∂ ln |X>X|
∂X

=
1

|X>X|
∂|X>X|

∂X
= 2X†

12


	1 基本结果
	2 向量对标量求导
	3 标量对向量求导
	4 向量对向量求导
	5 矩阵对标量求导
	6 标量对矩阵求导
	6.1 迹对矩阵求导
	6.2 行列式对矩阵求导


