1655年,Wallis在研究单位圆方程下的面积时得到了Wallis公式: \begin{align*} \frac{\pi}{2} & = \left( \frac{2}{1} \cdot \frac{2}{3} \right) \cdot \left( \frac{4}{3} \cdot \frac{4}{5} \right) \cdot \left( \frac{6}{5} \cdot \frac{6}{7} \right) \cdot \left( \frac{8}{7} \cdot \frac{8}{9} \right) \cdots = \prod_{n=1}^\infty \left( \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} \right) = \prod_{n=1}^\infty \frac{4n^2}{4n^2-1} \end{align*} 但他的推导并不严格,用到了分数的阶乘,而如何将阶乘从正整数插值到分数当时尚不清楚。进入十八世纪后,Goldbach率先开始考虑阶乘的插值问题,但一直不得要领,便向其他数学家好友求助。1729年,Bernoulli家族的Daniel Bernoulli给出了一个无穷乘积形式的结果: \begin{align*} n! = \lim_{m \rightarrow \infty} \left( m + 1 + \frac{n}{2} \right)^{n-1} \prod_{k=1}^m \frac{k+1}{k+n} \end{align*} 将阶乘的定义延拓到了实数集。

Euler的发现

  Euler与Daniel的私交甚好,在得知Daniel在研究阶乘的插值问题后,也开始了自己的探索,首先他发现对任意自然数有: \begin{align*} \lim_{m \rightarrow \infty} \frac{(m+1)^n}{(m+n) \cdots (m+1)} = 1 \Longrightarrow \lim_{m \rightarrow \infty} \frac{(m+1)^n m!}{(m+n)!} = 1 \end{align*} 于是有 \begin{align*} n! & = n! \lim_{m \rightarrow \infty} \frac{(m+1)^n m!}{(m+n)!} = \lim_{m \rightarrow \infty} \frac{\class{green}{(m+1)^n} \class{blue}{m!}}{\class{red}{(n+1)(n+2)\cdots(n+m)}} \\ & = \left[ \class{green}{\left( \frac{2}{1} \right)^n} \frac{\class{blue}{1}}{\class{red}{n+1}} \right] \cdot \left[ \class{green}{\left( \frac{3}{2} \right)^n} \frac{\class{blue}{2}}{\class{red}{n+2}} \right] \cdot \left[ \class{green}{\left( \frac{4}{3} \right)^n} \frac{\class{blue}{3}}{\class{red}{n+3}} \right] \cdots \end{align*} 这样Euler也得到了一个的无穷乘积式。

  就收敛到的速度来说,Daniel的无穷乘积式比Euler的要快得多,但Euler的无穷乘积式更方便进一步挖掘,例如令有 \begin{align*} \left(\frac{1}{2}\right)! = \sqrt{ \left[ \frac{\class{green}{2}}{\class{blue}{1}} \cdot \frac{\class{blue}{1^2 \cdot 2} \cdot \class{green}{2}}{3 \cdot 3} \right] \cdot \left[ \frac{\class{green}{3}}{\class{blue}{2}} \cdot \frac{\class{blue}{2^2 \cdot 2} \cdot \class{green}{2}}{5 \cdot 5} \right] \cdot \left[ \frac{\class{green}{4}}{\class{blue}{3}} \cdot \frac{\class{blue}{3^2 \cdot 2} \cdot \class{green}{2}}{7 \cdot 7} \right] \cdots} = \sqrt{\frac{\class{blue}{2} \cdot \class{green}{4}}{3 \cdot 3} \cdot \frac{\class{blue}{4} \cdot \class{green}{6}}{5 \cdot 5} \cdot \frac{\class{blue}{6} \cdot \class{green}{8}}{7 \cdot 7} \cdots} \end{align*} 最后一项不正是Wallis公式么?于是立刻得到 \begin{align*} \left(\frac{1}{2}\right)! = \frac{\sqrt{\pi}}{2} \end{align*}

  在Euler这样的大师眼里,一旦扯上,自然就和圆相关的积分逃不了干系,那么应该也可以表示成某种积分的形式,于是Euler开始考虑一般形式的积分 \begin{align} \label{eq: first-integral-raw} E(m,n) = \int_0^1 x^m (1-x)^n \diff x \end{align} 其中是正实数,是正整数。由分部积分有 \begin{align*} E(m,n) & = \frac{1}{m+1} \int_0^1 (1-x)^n \diff x^{m+1} = \left. \frac{1}{m+1} x^{m+1} (1-x)^n \right|_0^1 - \frac{1}{m+1} \int_0^1 x^{m+1} \diff (1-x)^n \\ & = \frac{n}{m+1} \int_0^1 x^{m+1}(1-x)^{n-1} \diff x = \frac{n}{m+1} E(m+1,n-1) \end{align*} 又 \begin{align*} E(m+n,0) = \int_0^1 x^{m+n} \diff x = \frac{1}{m+n+1} \end{align*} 于是 \begin{align} \label{eq: E} E(m,n) = \frac{n}{m+1} \cdot \frac{n-1}{m+2} \cdots \frac{1}{m+n} E(m+n,0) = \frac{n}{m+1} \cdot \frac{n-1}{m+2} \cdots \frac{1}{m+n} \cdot \frac{1}{m+n+1} \end{align} 整理可得 \begin{align*} \frac{n!}{(m+1)(m+2) \cdots (m+n)} = (m+n+1) \int_0^1 x^m (1-x)^n \diff x \end{align*} 为了将摘出来,Euler先做变量代换,于是 \begin{align} \label{eq: Euler trick} \frac{n!}{(u+v)(u+2v)\cdots (u+nv)} = \frac{u+(n+1)v}{v^{n+1}} \int_0^1 x^{u/v} (1-x)^n \diff x \end{align} 注意当时,式(\ref{eq: Euler trick})左端,对右端继续做变量代换,注意 \begin{align*} x^{u/v} = y^{u/(u+v)}, \quad \diff x = \frac{v}{u+v} y^{-u/(u+v)} \diff y \end{align*} 故式(\ref{eq: Euler trick})右端变为 \begin{align*} \frac{u+(n+1)v}{v^{n+1}} \int_0^1 y^{u/(u+v)} (1-y^{v/(u+v)})^n \frac{v}{u+v} y^{-u/(u+v)} \diff y & = \frac{u+(n+1)v}{v^n (u+v)} \int_0^1 (1-y^{v/(u+v)})^n \diff y \\ & = \frac{u+(n+1)v}{(u+v)^{n+1}} \int_0^1 \left(\frac{1-y^{v/(u+v)}}{v/(u+v)}\right)^n \diff y \end{align*} 综上我们有 \begin{align*} n! = \lim_{u \rightarrow 1, v \rightarrow 0} \frac{u+(n+1)v}{(u+v)^{n+1}} \int_0^1 \left(\frac{1-y^{v/(u+v)}}{v/(u+v)}\right)^n \diff y = \int_0^1 \lim_{x \rightarrow 0} \left(\frac{1-y^x}{x}\right)^n \diff y = \int_0^1 \left(\lim_{x \rightarrow 0} \frac{1-y^x}{x}\right)^n \diff y \end{align*} 其中第二个等号交换取极限和求积分不是恒成立的,由L'Hospital法则知 \begin{align*} \lim_{x \rightarrow 0} \frac{1-y^x}{x} = \lim_{x \rightarrow 0} -y^x \ln y = - \ln y \end{align*} 这样就得到了阶乘的积分表达式 \begin{align*} n! = \int_0^1 ( - \ln y )^n \diff y \end{align*} 做变量代换,即,可得 \begin{align*} n! = \int_\infty^0 x^n (- e^{-x}) \diff x = \int_0^\infty e^{-x} x^n \diff x \end{align*}

  记 \begin{align} \label{eq: second-integral-raw} \gamma(n) = \int_0^\infty e^{-x} x^n \diff x \end{align} 则对于正整数,此外有递推关系 \begin{align*} \gamma(n) = - \int_0^\infty x^n \diff e^{-x} = - x^n e^{-x} |_0^\infty + \int_0^\infty e^{-x} n x^{n-1} \diff x = n \cdot \gamma(n-1) \end{align*} 于是两个积分之间有如下关系: \begin{align*} E(m,n) = \frac{n!}{(m+1)(m+2)\cdots(m+n)(m+n+1)} = \frac{\gamma (m) \gamma (n)}{\gamma (m+n+1)} \end{align*} 后来可能是出于美观的原因吧,Legendre将式(\ref{eq: first-integral-raw})、式(\ref{eq: second-integral-raw})分别修改为 \begin{align} \label{eq: first-second-integral} B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} \diff x, \quad \Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \diff x \end{align} 即指数中的均偏移了1,于是对于正整数且有递推关系 \begin{align*} \Gamma(n) = \gamma(n-1) = (n-1) \gamma (n-2) = (n-1) \Gamma (n-1) \end{align*} 此外两个积分之间有如下关系: \begin{align*} B(m,n) = E(m-1,n-1) = \frac{\gamma (m-1) \gamma (n-1)}{\gamma (m+n-1)} = \frac{\Gamma (m) \Gamma (n)}{\Gamma (m+n)} \end{align*} 式(\ref{eq: first-second-integral})中的函数和函数分别被称为Euler第一型积分和Euler第二型积分。

函数的等价形式

  函数除了Euler给出的 \begin{align*} \Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \diff x = \int_0^1 ( - \ln y )^{n-1} \diff y = \int_0^\infty e^{-e^z} e^{nz} \diff z \end{align*} 这几种形式外(最后一个形式可通过变量代换得到),还有许多等价形式。

Gauss形式

  注意 \begin{align*} e = \lim_{m \rightarrow \infty} \left( 1 + \frac{1}{m} \right)^m = \lim_{m \rightarrow \infty} \left( 1 + \frac{1}{-m/x} \right)^{-m/x} \Longrightarrow e^{-x} = \lim_{m \rightarrow \infty} \left( 1 - \frac{x}{m} \right)^m \end{align*} 于是 \begin{align*} \Gamma(n) = \int_0^\infty e^{-x} x^{n-1} \diff x = \lim_{m \rightarrow \infty} \int_0^m \left( 1 - \frac{x}{m} \right)^m x^{n-1} \diff x \end{align*} 由分部积分有 \begin{align*} S & = \int_0^m \left( 1 - \frac{x}{m} \right)^m x^{n-1} \diff x = \frac{1}{n} \int_0^m \left( 1 - \frac{x}{m} \right)^m \diff x^n \\ & = \frac{x^n}{n} \left. \left( 1 - \frac{x}{m} \right)^m \right|_0^m - \frac{1}{n} \int_0^m x^n m \left( 1 - \frac{x}{m} \right)^{m-1} \left( - \frac{1}{m} \right) \diff x \\ & = \frac{m}{mn} \int_0^m \left( 1 - \frac{x}{m} \right)^{m-1} x^n \diff x \end{align*} 注意系数分子中的是由对求导而来(该项会一直变),分母中的是由对求导而来(该项不会变),分母中的是对积分而得(该项会一直变),因此 \begin{align*} S & = \frac{m}{mn} \int_0^m \left( 1 - \frac{x}{m} \right)^{m-1} x^n \diff x = \frac{m}{mn} \cdot \frac{m-1}{m(n+1)} \int_0^m \left( 1 - \frac{x}{m} \right)^{m-2} x^{n+1} \diff x \\ & = \frac{m}{mn} \cdot \frac{m-1}{m(n+1)} \cdots \frac{1}{m(n+m-1)} \int_0^m \left( 1 - \frac{x}{m} \right)^0 x^{n+m-1} \diff x \\ & = \frac{m}{mn} \cdot \frac{m-1}{m(n+1)} \cdots \frac{1}{m(n+m-1)} \cdot \frac{m^{n+m}}{n+m} \\ & = \frac{m^n m!}{n (n+1) \cdots (n+m)} = \frac{m^n}{n} \prod_{k=1}^m \frac{k}{n+k} \end{align*} 这样就得到了Gauss形式的函数: \begin{align} \label{eq: gauss} \Gamma(n) = \lim_{m \rightarrow \infty} \frac{m^n}{n} \prod_{k=1}^m \frac{k}{n+k} = \lim_{m \rightarrow \infty} \frac{m^n m!}{n (n+1) \cdots (n+m)} \end{align}

Weierstrass形式

  引入Euler-Mascheroni常数 \begin{align*} \gamma = \lim_{m \rightarrow \infty} \left( \sum_{k=1}^m \frac{1}{k} - \ln m \right) = \int_1^\infty \left( \frac{1}{\lfloor x \rfloor} - \frac{1}{x} \right) \diff x \end{align*} 注意 \begin{align*} m^n = e^{n \log m} = \exp \left( n \sum_{k=1}^m \frac{1}{k} - n \sum_{k=1}^m \frac{1}{k} + n \ln m \right) = \exp \left( - n \left( \sum_{k=1}^m \frac{1}{k} - \ln m \right) \right) \prod_{k=1}^m e^{n/k} \end{align*} 代入式(\ref{eq: gauss})即可得Weierstrass形式的函数: \begin{align*} \Gamma(n) = \lim_{m \rightarrow \infty} \frac{1}{n} \exp \left( - n \left( \sum_{k=1}^m \frac{1}{k} - \ln m \right) \right) \left( \prod_{k=1}^m e^{n/k} \right) \left( \prod_{k=1}^m \frac{k}{n+k} \right) = \frac{e^{-n \gamma}}{n} \prod_{k=1}^\infty e^{n/k} \left( 1 + \frac{n}{k} \right)^{-1} \end{align*}

函数的性质

  本节证明Euler反射公式、Legendre倍元公式、Gauss乘法公式和Bohr-Mollerup定理。

Euler反射公式

  根据Gauss形式 \begin{align*} \Gamma(n) = \lim_{m \rightarrow \infty} \frac{m^n m!}{n (n+1) \cdots (n+m)} = (n-1) \lim_{m \rightarrow \infty} \frac{m^{n-1} m!}{(n-1) n \cdots (n+m-1)} \frac{m}{n+m} = (n-1) \Gamma(n-1) \end{align*} 注意该式不需要为正整数。代入有 \begin{align*} \Gamma(n) = \lim_{m \rightarrow \infty} \frac{m^n}{n} \prod_{k=1}^m \frac{k}{n+k}, \quad \Gamma(-n) = \lim_{m \rightarrow \infty} \frac{m^{-n}}{-n} \prod_{k=1}^m \frac{k}{-n+k} \end{align*} 两式相乘可得 \begin{align*} \Gamma(n) \Gamma(-n) = \frac{-1}{n^2} \prod_{k=1}^\infty \frac{k^2}{k^2 - n^2} = \frac{-1}{n^2} \prod_{k=1}^\infty \left( 1 - \frac{n^2}{k^2} \right)^{-1} = \frac{-1}{n^2} \frac{\pi n}{\sin \pi n} = \frac{1}{-n} \frac{\pi}{\sin \pi n} \end{align*} 其中倒数第二个等号是根据的无穷乘积式 \begin{align*} \frac{\sin x}{x} = \left( 1 - \frac{x^2}{\pi^2} \right) \left( 1 - \frac{x^2}{4 \pi^2} \right) \left( 1 - \frac{x^2}{9 \pi^2} \right) \cdots = \prod_{k=1}^\infty \left( 1 - \frac{x^2}{k^2 \pi^2} \right) \Longrightarrow \frac{\sin \pi n}{\pi n} = \prod_{k=1}^\infty \left( 1 - \frac{n^2}{k^2} \right) \end{align*} 于是可得Euler反射公式: \begin{align*} \frac{\pi}{\sin \pi n} = \Gamma(n) (-n \Gamma(-n) ) = \Gamma(n) \Gamma(1-n) \end{align*}

Legendre倍元公式

  对函数做变量代换,即,可得 \begin{align*} B(m,n) & = \int_0^1 x^{m-1} (1-x)^{n-1} \diff x = \int_0^{\frac{\pi}{2}} \sin^{2m-2} y \cos^{2n-2} y 2 \sin y \cos y \diff y \\ & = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} y \cos^{2n-1} y \diff y \end{align*} 于是 \begin{align*} I = \frac{\Gamma (z) \Gamma (z)}{2\Gamma (2z)} = \frac{B(z,z)}{2} = \int_0^{\frac{\pi}{2}} \sin^{2z-1} y \cos^{2z-1} y \diff y = 2^{1-2z} \int_0^{\frac{\pi}{2}} \sin^{2z-1} 2y \diff y = 2^{-2z} \int_0^{\pi} \sin^{2z-1} y \diff y \end{align*} 由于关于对称,因此 \begin{align*} \frac{\Gamma (z) \Gamma (z)}{2\Gamma (2z)} = I = 2^{-2z} \int_0^{\pi} \sin^{2z-1} y \diff y = 2^{1-2z} \int_0^{\frac{\pi}{2}} \sin^{2z-1} y \diff y = 2^{-2z} B \left( z, \frac{1}{2} \right) = 2^{-2z} \frac{\Gamma(z) \Gamma \left( \frac{1}{2} \right)}{\Gamma \left( z+\frac{1}{2} \right)} \end{align*} 注意,整理可得Legendre倍元公式: \begin{align*} \Gamma (z) \Gamma \left( z+\frac{1}{2} \right) = 2^{1-2z} \Gamma (2z) \Gamma \left( \frac{1}{2} \right) = 2^{1-2z} \sqrt{\pi} \Gamma (2z) = (2 \pi)^{\frac{1}{2}} 2^{\frac{1}{2} - 2z} \Gamma (2z) \end{align*}

Gauss乘法公式

  事实上,Legendre倍元公式是Gauss乘法公式 \begin{align*} \prod_{k=0}^{n-1} \Gamma \left( z + \frac{k}{n} \right) = (2 \pi)^{\frac{n-1}{2}} n^{\frac{1}{2} - nz} \Gamma (nz), \quad \forall z \not \in \left\{ - \frac{l}{n} : l \in \Nbb \right\} \end{align*} 在时的特例。根据Gauss形式和Stirling公式 \begin{align*} \Gamma(n) = \lim_{m \rightarrow \infty} \frac{m^n m!}{n (n+1) (n+2) \cdots (n+m)}, \quad m! = \sqrt{2 \pi m} \left( \frac{m}{e} \right)^m (1 + O (1/m)) \end{align*} 易知有 \begin{align*} \Gamma \left( z + \frac{k}{n} \right) & = \left( z + \frac{k}{n} - 1 \right) \Gamma \left( z + \frac{k}{n} - 1 \right) \\ & = \left( z + \frac{k}{n} - 1 \right) \lim_{m \rightarrow \infty} \frac{m^{z + \frac{k}{n} - 1} m!}{\left( z + \frac{k}{n} - 1 \right) \left( z + \frac{k}{n} \right) \left( z + \frac{k}{n} + 1 \right) \cdots \left( z + \frac{k}{n} - 1 + m \right)} \\ & = \lim_{m \rightarrow \infty} \frac{m^{z + \frac{k}{n} - 1} \sqrt{2 \pi m} \left( \frac{m}{e} \right)^m}{\left( z + \frac{k}{n} \right) \left( z + \frac{k}{n} + 1 \right) \cdots \left( z + \frac{k}{n} - 1 + m \right)} \\ & = (2 \pi)^\frac{1}{2} \lim_{m \rightarrow \infty} \frac{m^{z + \frac{k}{n} - \frac{1}{2}} \left( \frac{mn}{e} \right)^m}{(nz+k) (nz+k+n) \cdots (nz+k-n+mn)} \end{align*} 于是 \begin{align*} \prod_{k=0}^{n-1} \Gamma \left( z + \frac{k}{n} \right) & = (2 \pi)^\frac{n}{2} \lim_{m \rightarrow \infty} \frac{m^{nz-\frac{n}{2}} m^{\sum_{k=0}^{n-1} \frac{k}{n}} \left( \frac{mn}{e} \right)^{mn}}{(nz) (nz+1) \cdots (nz-1+mn)} \\ & = (2 \pi)^\frac{n}{2} \lim_{m \rightarrow \infty} \frac{m^{nz-\frac{1}{2}} \left( \frac{mn}{e} \right)^{mn}}{(nz) (nz+1) \cdots (nz-1+mn)} \\ & = (2 \pi)^\frac{n}{2} n^{\frac{1}{2}-nz} \lim_{m \rightarrow \infty} \frac{m^{nz-\frac{1}{2}} \left( \frac{m}{e} \right)^m}{(nz) (nz+1) \cdots (nz-1+m)} \\ & = (2 \pi)^\frac{n-1}{2} n^{\frac{1}{2}-nz} \lim_{m \rightarrow \infty} \frac{m^{nz-1} m!}{(nz) (nz+1) \cdots (nz-1+m)} \\ & = (2 \pi)^\frac{n-1}{2} n^{\frac{1}{2}-nz} (nz-1) \lim_{m \rightarrow \infty} \frac{m^{nz-1} m!}{(nz-1) (nz) (nz+1) \cdots (nz-1+m)} \\ & = (2 \pi)^\frac{n-1}{2} n^{\frac{1}{2}-nz} (nz-1) \Gamma (nz-1) \\ & = (2 \pi)^\frac{n-1}{2} n^{\frac{1}{2}-nz} \Gamma (nz) \end{align*}

Bohr-Mollerup定理

  阶乘的插值函数并不唯一,但同时满足1) ;2) ;3) 是凸函数 这三个条件的只有函数。

  设函数满足这三个条件,根据第2个条件可知对任意正整数有 \begin{align*} f(n+m) = (n+m-1) (n+m-2) \cdots (n+1) n f (n) \end{align*} 即可完全由决定,因此只需考虑上的。此外令,根据第1个条件可知

  对任意,设为连接两点的直线斜率,即 \begin{align*} S(n_1, n_2) = \frac{\ln f(n_2) - \ln f(n_1)}{n_2 - n_1} \end{align*} 由附录中的定理1知关于均是单调增函数,于是对有 \begin{align*} & \qquad ~ S(m-1, m) \le S(m, m+n) \le S(m, m+1) \\ & \Longleftrightarrow \frac{\ln f(m) - \ln f(m-1)}{1} \le \frac{\ln f(m+n) - \ln f(m)}{n} \le \frac{\ln f(m+1) - \ln f(m)}{1} \\ & \Longleftrightarrow \frac{\ln (m-1)}{1} \le \frac{\ln f(m+n) - \ln f(m)}{n} \le \frac{\ln m}{1} \\ & \Longleftrightarrow \ln f(m) + n \ln (m-1) \le \ln f(m+n) \le \ln f(m) + n \ln m \\ & \Longleftrightarrow (m-1)^n (m-1)! \le f(m+n) \le m^n (m-1)! \end{align*} 于是代入可得 \begin{align*} \frac{(m-1)^n (m-1)!}{(n+m-1) (n+m-2) \cdots (n+1) n} \le f(n) \le \frac{m^n m!}{(n+m) (n+m-1) (n+m-2) \cdots (n+1) n} \cdot \frac{n+m}{m} \end{align*} 注意中间项无关,因此左半、右半部分中的可以各自取值,现令左半的、右半的可得 \begin{align*} \frac{m^n m!}{(n+m) (n+m-1) \cdots (n+1) n} \le f(n) \le \frac{m^n m!}{(n+m) (n+m-1) (n+m-2) \cdots (n+1) n} \cdot \frac{n+m}{m} \end{align*} 由夹逼定理知 \begin{align*} f(n) = \lim_{m \rightarrow \infty} \frac{m^n m!}{(n+m) (n+m-1) \cdots (n+1) n} = \Gamma(n) \end{align*} 即在上满足三个条件的函数就是函数。又 \begin{align*} f(n+1) = n f(n) & = n \lim_{m \rightarrow \infty} \frac{m^n m!}{(n+m) (n+m-1) \cdots (n+1) n} \\ & = \lim_{m \rightarrow \infty} \frac{m^n m!}{(n+m) (n+m-1) \cdots (n+1)} \cdot \frac{m}{n+m+1} \\ & = \Gamma(n+1) \end{align*} 即在上满足三个条件的函数依然是函数,依次类推在上满足三个条件的函数就是函数。

附录

定理1:对于凸函数上的两点,连接其直线的斜率 \begin{align*} S(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \end{align*} 关于均是单调增函数。

证明:不妨设,对,记,即,易知有 \begin{align*} \xhat - x_1 = (1 - \alpha) (x_2 - x_1), \quad x_2 - \xhat = \alpha (x_2 - x_1) \end{align*} 根据的凸性知,于是 \begin{align*} f(\xhat) - f(x_1) \le (1 - \alpha) (f(x_2) - f(x_1)), \quad f(x_2) - f(\xhat) \ge \alpha (f(x_2) - f(x_1)) \end{align*} 联立整理可得 \begin{align*} \frac{f(\xhat) - f(x_1)}{1 - \alpha} \le f(x_2) - f(x_1) \le \frac{f(x_2) - f(\xhat)}{\alpha} \end{align*} 同除以可得 \begin{align*} \frac{f(\xhat) - f(x_1)}{\xhat - x_1} = \frac{f(\xhat) - f(x_1)}{(1 - \alpha)(x_2 - x_1)} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(\xhat)}{\alpha(x_2 - x_1)} = \frac{f(x_2) - f(\xhat)}{x_2 - \xhat} \end{align*} 即,由的任意性知结论成立。

Copyright © Avanti 2020 all right reserved,powered by Gitbook文件最后修改时间: 2021-06-19 10:20:29

results matching ""

    No results matching ""