Bayes公式描述了后验与先验和似然的关系: \begin{align*} \pr(y|x) = \frac{\pr(x|y) \pr(y)}{\pr(x)} \varpropto \pr(x|y) \pr(y) \end{align*} 通常后验与先验不属于同一个分布族,但也存在一些特例,当它们同属一个分布族时,此先验称为似然的共轭先验,常见的有Gamma-Poisson共轭、Beta-Binomial共轭、Multinomial-Dirichlet共轭。

Gamma-Poisson共轭

  对函数的积分变量做线性变换,于是有 \begin{align*} \Gamma(n) = \int_0^\infty e^{-z} z^{n-1} \diff z = \int_0^\infty e^{-\alpha y} \alpha^n y^{n-1} \diff y \Longrightarrow 1 = \int_0^\infty \frac{\alpha^n y^{n-1} e^{- \alpha y}}{\Gamma(n)} \diff y \end{align*} 设服从参数为的Gamma分布: \begin{align*} \pr(y) = \frac{\alpha^n y^{n-1} e^{- \alpha y}}{\Gamma(n)} \end{align*} 在给定的条件下,设服从参数为的Poisson分布: \begin{align*} \pr(x = k|y) = \frac{y^k e^{-y}}{k!} \end{align*} 由全概率公式有 \begin{align*} \pr(x=k) & = \int_0^\infty \pr(y) \pr(x=k|y) \diff y = \int_0^\infty \frac{\alpha^n y^{n-1} e^{- \alpha y}}{\Gamma(n)} \frac{y^k e^{-y}}{k!} \diff y \\ & = \frac{\alpha^n}{\Gamma(n) k!} \frac{\Gamma(n+k)}{(\alpha+1)^{n+k}} \int_0^\infty \frac{(\alpha+1)^{n+k} y^{n + k -1} e^{- (\alpha+1) y}}{\Gamma(n+k)} \diff y \\ & = \frac{\alpha^n}{\Gamma(n) k!} \frac{\Gamma(n+k)}{(\alpha+1)^{n+k}} \end{align*} 于是 \begin{align*} \pr(y|x = k) & = \frac{\pr(y) \pr(x = k|y)}{\pr(x = k)} = \frac{\alpha^n}{\Gamma(n) k!} y^{n + k -1} e^{- (\alpha+1) y} / \frac{\alpha^n}{\Gamma(n) k!} \frac{\Gamma(n+k)}{(\alpha+1)^{n+k}} \\ & = \frac{(\alpha+1)^{n+k} y^{n + k -1} e^{- (\alpha+1) y}}{\Gamma(n+k)} \end{align*} 即后验服从参数为的Gamma分布。

Beta-Binomial共轭

  设服从参数为的Beta分布: \begin{align*} \pr(y) = \frac{y^{\alpha - 1} (1 - y)^{\beta - 1}}{B(\alpha, \beta)} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1} \end{align*} 在给定的条件下,设服从参数为的Binomial分布: \begin{align*} \pr(x=k|y) = \binom{n}{k} y^k (1-y)^{n-k} \end{align*} 由全概率公式有 \begin{align*} \pr(x=k) & = \int_0^1 \pr(y) \pr(x=k|y) \diff y = \int_0^1 \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \binom{n}{k} y^{\alpha+k-1} (1-y)^{\beta+n-k-1} \diff y \\ & = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \binom{n}{k} \frac{\Gamma(\alpha+k) \Gamma(\beta+n-k)}{\Gamma(\alpha+\beta+n)} \int_0^1 \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+k) \Gamma(\beta+n-k)} y^{\alpha+k-1} (1-y)^{\beta+n-k-1} \diff y \\ & = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \binom{n}{k} \frac{\Gamma(\alpha+k) \Gamma(\beta+n-k)}{\Gamma(\alpha+\beta+n)} \end{align*} 于是 \begin{align*} \pr(y|x = k) & = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \binom{n}{k} y^{\alpha+k-1} (1-y)^{\beta+n-k-1} / \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \binom{n}{k} \frac{\Gamma(\alpha+k) \Gamma(\beta+n-k)}{\Gamma(\alpha+\beta+n)} \\ & = \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+k) \Gamma(\beta+n-k)} y^{\alpha+k-1} (1-y)^{\beta+n-k-1} \end{align*} 即后验服从参数为的Beta分布。

Multinomial-Dirichlet共轭

  Dirichlet分布是Beta分布的多元扩展,Multinomial分布是Binomial分布的多元扩展,不难猜测Dirichlet分布是Multinomial分布的共轭先验。设服从参数为的Dirichlet分布,即 \begin{align*} \pr(\yv) = \frac{\Gamma(\alpha_{k+1} + \cdots + \alpha_1)}{\Gamma(\alpha_{k+1}) \cdots \Gamma(\alpha_1)} \prod_{i=1}^{k+1} y_i^{\alpha_i - 1} \end{align*} 在给定的条件下,设服从参数为的Multinomial分布: \begin{align*} \pr(\xv=\nv | \yv) = \frac{\Gamma(n_{k+1} + \cdots + n_1)}{\Gamma(n_{k+1}) \cdots \Gamma(n_1)} \prod_{i=1}^{k+1} y_i^{n_i} \end{align*} 由全概率公式有 \begin{align*} \pr(\xv = \nv) & = \int \cdots \int \pr(\yv) \pr(\xv = \nv|\yv) \diff \yv \\ & = \frac{\Gamma(\alpha_{k+1} + \cdots + \alpha_1)}{\Gamma(\alpha_{k+1}) \cdots \Gamma(\alpha_1)} \frac{\Gamma(n_{k+1} + \cdots + n_1)}{\Gamma(n_{k+1}) \cdots \Gamma(n_1)} \int \cdots \int \prod_{i=1}^{k+1} y_i^{\alpha_i + n_i - 1} \diff y_1 \cdots \diff y_k \\ & = \frac{\Gamma(\alpha_{k+1} + \cdots + \alpha_1)}{\Gamma(\alpha_{k+1}) \cdots \Gamma(\alpha_1)} \frac{\Gamma(n_{k+1} + \cdots + n_1)}{\Gamma(n_{k+1}) \cdots \Gamma(n_1)} \frac{\Gamma(\alpha_{k+1}+n_{k+1}) \cdots \Gamma(\alpha_1+n_1)}{\Gamma(\alpha_{k+1}+n_{k+1} + \cdots + \alpha_1+n_1)} \end{align*} 于是 \begin{align*} \pr(\yv|\xv = \nv) & = \prod_{i=1}^{k+1} y_i^{\alpha_i + n_i - 1} / \frac{\Gamma(\alpha_{k+1}+n_{k+1}) \cdots \Gamma(\alpha_1+n_1)}{\Gamma(\alpha_{k+1}+n_{k+1} + \cdots + \alpha_1+n_1)} \\ & = \frac{\Gamma(\alpha_{k+1} + n_{k+1} + \cdots + \alpha_1 + n_1)}{\Gamma(\alpha_{k+1} + n_{k+1}) \cdots \Gamma(\alpha_1 + n_1)} \prod_{i=1}^{k+1} y_i^{\alpha_i + n_i - 1} \end{align*} 即后验服从参数为的Dirichlet分布。

Copyright © Avanti 2020 all right reserved,powered by Gitbook文件最后修改时间: 2021-06-20 00:22:30

results matching ""

    No results matching ""